Syntonic–rastmic subchroma notation: Difference between revisions
Changed text representations of accidentals |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
'''Syntonic–rastmic subchroma notation''' is a notation scheme developed by [[Aura]] et al.<ref>Other contributors include [[Flora Canou]] and [[User:SupahstarSaga|HEHEHE I AM A SUPAHSTAR SAGA]].</ref> that is an expansion to the [[neutral circle-of-fifths notation]]. | |||
While the neutral circle-of-fifths notation models the 2.3 [[subgroup]] of [[just intonation]], with the neutral intervals capable of roughly modeling the harmonic 11, the | While the neutral circle-of-fifths notation models the 2.3 [[subgroup]] of [[just intonation]], with the neutral intervals capable of roughly modeling the harmonic 11, the syntonic–rastmic subchroma notation accurately captures the characteristics of the 2.3.5.11 subgroup, and is fit for a wider variety of equal temperaments and multirank temperaments. As it tries to strike a balance between the number and semantic consistency of the accidentals, it has the following three basic building blocks of accidentals: the conventional accidentals, the syntonic and demisyntonic accidentals, and the rastmic and demirastmic accidentals, detailed below. | ||
== Accidentals == | == Accidentals == | ||
Line 8: | Line 8: | ||
{| class="wikitable center-4" | {| class="wikitable center-4" | ||
|+Series of conventional accidentals | |+ style="font-size: 105%;" | Series of conventional accidentals | ||
|- | |- | ||
! Name !! Ratio !! Monzo !! Textual<br>Representation | ! Name !! Ratio !! Monzo !! Textual<br />Representation | ||
|- | |- | ||
| … || … || … || … | | … || … || … || … | ||
Line 24: | Line 24: | ||
| (None) || (2187/2048)<sup>0</sup> || {{monzo| 0 }} || | | (None) || (2187/2048)<sup>0</sup> || {{monzo| 0 }} || | ||
|- | |- | ||
| Demiflat || (2187/2048)<sup> | | Demiflat || (2187/2048)<sup>−1/2</sup> || {{monzo| 11/2 -7/2 }} || d | ||
|- | |- | ||
| Flat || (2187/2048)<sup> | | Flat || (2187/2048)<sup>−1</sup> || {{monzo| 11 -7 }} || b | ||
|- | |- | ||
| Sesquiflat || (2187/2048)<sup> | | Sesquiflat || (2187/2048)<sup>−3/2</sup> || {{monzo| 33/2 -21/2 }} || db | ||
|- | |- | ||
| Double flat || (2187/2048)<sup> | | Double flat || (2187/2048)<sup>−2</sup> || {{monzo| 22 -14 }} || bb | ||
|- | |- | ||
| … || … || … || … | | … || … || … || … | ||
Line 42: | Line 42: | ||
{| class="wikitable center-4" | {| class="wikitable center-4" | ||
|+Series of syntonic accidentals | |+ style="font-size: 105%;" | Series of syntonic accidentals | ||
|- | |- | ||
! Name !! Ratio !! Monzo !! Textual<br>Representation | ! Name !! Ratio !! Monzo !! Textual<br />Representation | ||
|- | |- | ||
| … || … || … || … | | … || … || … || … | ||
|- | |- | ||
| Synsharp || (81/80)<sup>1</sup> || {{monzo| -4 4 -1 }} || | | Synsharp || (81/80)<sup>1</sup> || {{monzo| -4 4 -1 }} || ↑ | ||
|- | |- | ||
| Demisynsharp || (81/80)<sup>1/2</sup> || {{monzo| -2 2 -1/2 }} || | | Demisynsharp || (81/80)<sup>1/2</sup> || {{monzo| -2 2 -1/2 }} || ^ | ||
|- | |- | ||
| (None) || (81/80)<sup>0</sup> || {{monzo| 0 }} || | | (None) || (81/80)<sup>0</sup> || {{monzo| 0 }} || | ||
|- | |- | ||
| Demisynflat || (81/80)<sup> | | Demisynflat || (81/80)<sup>−1/2</sup> || {{monzo| 2 -2 1/2 }} || v | ||
|- | |- | ||
| Synflat || (81/80)<sup> | | Synflat || (81/80)<sup>−1</sup> || {{monzo| 4 -4 1 }} || ↓ | ||
|- | |- | ||
| … || … || … || … | | … || … || … || … | ||
|} | |} | ||
=== Rastmic and demirastmic accidentals === | === Rastmic and demirastmic accidentals === | ||
Line 70: | Line 68: | ||
{| class="wikitable center-4" | {| class="wikitable center-4" | ||
|+Series of rastmic and demirastmic accidentals | |+ style="font-size: 105%;" | Series of rastmic and demirastmic accidentals | ||
|- | |- | ||
! Name !! Ratio !! Subgroup Monzo<br>(2.3.5.11) !! Textual<br>Representation | ! Name !! Ratio !! Subgroup Monzo<br />(2.3.5.11) !! Textual<br />Representation | ||
|- | |- | ||
| … || … || … || … | | … || … || … || … | ||
Line 86: | Line 84: | ||
| (None) || (243/242)<sup>0</sup> || {{monzo| 0 }} || | | (None) || (243/242)<sup>0</sup> || {{monzo| 0 }} || | ||
|- | |- | ||
| Demiraflat || (243/242)<sup> | | Demiraflat || (243/242)<sup>−1/2</sup> || {{monzo| 1/2 -5/2 0 1 }} || < | ||
|- | |- | ||
| Raflat || (243/242)<sup> | | Raflat || (243/242)<sup>−1</sup> || {{monzo| 1 -5 0 2 }} || \ | ||
|- | |- | ||
| Sesquiraflat || (243/242)<sup> | | Sesquiraflat || (243/242)<sup>−3/2</sup> || {{monzo| 3/2 -15/2 0 3 }} || <\ | ||
|- | |- | ||
| Double raflat || (243/242)<sup> | | Double raflat || (243/242)<sup>−2</sup> || {{monzo| 2 -10 0 4 }} || \\ | ||
|- | |- | ||
| … || … || … || … | | … || … || … || … | ||
Line 103: | Line 101: | ||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
|+ Overview of accidentals | |+ style="font-size: 105%;" | Overview of accidentals | ||
|- | |- | ||
! Name !! Ratio !! Subgroup Monzo<br>(2.3.5.11) !! Textual<br>Representation | ! Name !! Ratio !! Subgroup Monzo<br />(2.3.5.11) !! Textual<br />Representation | ||
|- | |- | ||
| Tendodemisharp || 729/704 || {{monzo| -6 6 0 -1 }} || t> | | Tendodemisharp || 729/704 || {{monzo| -6 6 0 -1 }} || t> | ||
Line 117: | Line 115: | ||
=== Natural accidental === | === Natural accidental === | ||
The natural accidental cancels all pitch alterations. | The natural accidental cancels all pitch alterations. | ||
== Notation guide for common tunings == | == Notation guide for common tunings == | ||
The | The syntonic–rastmic subchroma notation is closely related to the [[syntonic-rastmic equivalence continuum]], in that the accidental settings are similar among tunings of a particular equivalence number. Due to enharmonic equivalences, however, each tuning system can take many accidental settings. Each case shown in the tables below is only one of them. Users should choose the combination in question according to the semantics. | ||
Equal temperaments are shown if the corresponding edo has {1, 3, 9}-diamond consistency. Others can be notated as subsets or be extrapolated. | Equal temperaments are shown if the corresponding edo has {1, 3, 9}-diamond consistency. Others can be notated as subsets or be extrapolated. | ||
Line 126: | Line 124: | ||
=== Neutral tunings === | === Neutral tunings === | ||
{| class="wikitable center-1" | {| class="wikitable center-1" | ||
|+ Neutral tunings | |+ style="font-size: 105%;" | Neutral tunings | ||
|- | |- | ||
! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ||
Line 132: | Line 130: | ||
| 2 || t, # || Mohaha || 10e, 17, 24, 31, 38 | | 2 || t, # || Mohaha || 10e, 17, 24, 31, 38 | ||
|- | |- | ||
| 4 || | | 4 || ↑, t, #↓, # || Tetracot || 27e, 34, 41, 48, 55c | ||
|- | |- | ||
| 6 || | | 6 || ↑, t↓, t, t↑, #↓, # || Larry || 51ce, 58, 65, 72, 79 | ||
|- | |- | ||
| 8 || | | 8 || ↑, ↑↑, t↓, t, t↑, #↓↓, #↓, # || 7 & 89 || 82c, 89, 96 | ||
|} | |} | ||
55 can be notated as a mohaha tuning. 75 can be notated as a tetracot tuning. 123 and 137 can be notated as larry tunings. | 55 can be notated as a mohaha tuning. 75 can be notated as a tetracot tuning. 123 and 137 can be notated as larry tunings. | ||
Line 142: | Line 140: | ||
=== Protomere tunings === | === Protomere tunings === | ||
{| class="wikitable center-1" | {| class="wikitable center-1" | ||
|+ Protomere tunings | |+ style="font-size: 105%;" | Protomere tunings—order 1 | ||
|- | |- | ||
! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ||
Line 148: | Line 146: | ||
| 3 || t<, t>, # || Porcupine restriction || 15, 22, 29, 36ce | | 3 || t<, t>, # || Porcupine restriction || 15, 22, 29, 36ce | ||
|- | |- | ||
| 5 || | | 5 || ↑, t<, t>, #↓, # || Hitchcock restriction || 39, 46, 53, 60e | ||
|- | |- | ||
| 7 || | | 7 || ↑, ↑↑, t<, t>, #↓↓, #↓, # || Absurdity extension || 63c, 70, 77, 84e | ||
|} | |} | ||
{| class="wikitable center-1" | {| class="wikitable center-1" | ||
|+ Protomere tunings | |+ style="font-size: 105%;" | Protomere tunings—order 2 | ||
|- | |- | ||
! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ||
Line 160: | Line 158: | ||
| 6 || >, t<, t, t>, #<, # || Neutral porcupine restriction || 51, 58ce | | 6 || >, t<, t, t>, #<, # || Neutral porcupine restriction || 51, 58ce | ||
|- | |- | ||
| 8 || >, | | 8 || >, ↑, t<, t, t>, #↓, #<, # || Tetracot extension || 68, 75, 82e | ||
|- | |- | ||
| 10 || >, | | 10 || >, ↑, ↑>, t<, t, t>, #↓<, #↓, #<, # || Neutral hitchcock restriction || 92, 99, 106e | ||
|} | |} | ||
Line 169: | Line 167: | ||
=== Deuteromere tunings === | === Deuteromere tunings === | ||
{| class="wikitable center-1" | {| class="wikitable center-1" | ||
|+ Deuteromere tunings | |+ style="font-size: 105%;" | Deuteromere tunings—order 1 | ||
|- | |- | ||
! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ||
|- | |- | ||
| 7 || /, | | 7 || /, ↑, t<, t>, #↓, #\, # || Sevond extension || 56, 63, 70c | ||
|- | |- | ||
| 9 || /, | | 9 || /, ↑, ↑/, t<, t>, #↓\, #↓, #\, # || 7 & 87 || 80, 87, 94, 101c | ||
|- | |- | ||
| 11 || /, | | 11 || /, ↑, ↑/, ↑↑, t<, t>, #↓↓, #↓\, #↓, #\, # || Twentcufo || 104c, 111, 118, 125, 132e | ||
|- | |- | ||
| 13 || /, | | 13 || /, ↑, ↑/, ↑↑, ↑↑/, t<, t>, #↓↓\, #↓↓, #↓\, #↓, #\, # || 7 & 149 || 135c, 142, 149, 156e | ||
|} | |} | ||
{| class="wikitable center-1" | {| class="wikitable center-1" | ||
|+ Deuteromere tunings | |+ style="font-size: 105%;" | Deuteromere tunings—order 2 | ||
|- | |- | ||
! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ||
|- | |- | ||
| 18 || >, /, | | 18 || >, /, ↑<, ↑, ↑>, ↑/, ↑↑<, t<, t, <br />t>, #↓↓>, #↓\, #↓<, #↓, #↓>, #\, #<, # || Neutral 7 & 87 || 174, 181, 188c | ||
|- | |- | ||
| 20 || >, /, | | 20 || >, /, ↑<, ↑, ↑>, ↑/, ↑↑<, ↑↑, t<, t, <br />t>, #↓↓, #↓↓>, #↓\, #↓<, #↓, #↓>, #\, #<, # || 7 & 205 || 198, 205, 212, 219ce | ||
|- | |- | ||
| 22 || >, /, | | 22 || >, /, ↑<, ↑, ↑>, ↑/, ↑↑<, ↑↑, ↑↑>, t<, <br />t, t>, #↓↓<, #↓↓, #↓↓>, #↓\, #↓<, #↓, #↓>, #\, #<, # || Neutral twentcufo || 222c, 229, 236, 243e | ||
|} | |} | ||
Line 198: | Line 196: | ||
=== Tritomere tunings === | === Tritomere tunings === | ||
{| class="wikitable center-1" | {| class="wikitable center-1" | ||
|+ Tritomere tunings | |+ style="font-size: 105%;" | Tritomere tunings—order 1 | ||
|- | |- | ||
! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ||
|- | |- | ||
| 13 || /, | | 13 || /, ↑\, ↑, ↑/, ↑↑\, t<, t>, #↓↓/, #↓\, #↓, #↓/, #\, # || 7 & 121 || 121, 128, 135, 142c | ||
|- | |- | ||
| 15 || /, | | 15 || /, ↑\, ↑, ↑/, ↑↑\, ↑↑, t<, t>, #↓↓, #↓↓/, #↓\, #↓, #↓/, #\, # || Trinity restriction || 145, 152, 159, 166, 173c | ||
|- | |- | ||
| 17 || /, | | 17 || /, ↑\, ↑, ↑/, ↑↑\, ↑↑, ↑↑/, t<, t>, #↓↓\, #↓↓, #↓↓/, #↓\, #↓, #↓/, #\, # || 7 & 183 || 169c, 176, 183, 190, 197e | ||
|- | |- | ||
| 19 || /, | | 19 || /, ↑\, ↑, ↑/, ↑↑\, ↑↑, ↑↑/, ↑↑//, t<, t>, #↓↓\\, #↓↓\, #↓↓, #↓↓/, #↓\, #↓, #↓/, #\, # || 7 & 207 || 200c, 207, 214 | ||
|} | |} | ||
{| class="wikitable center-1" | {| class="wikitable center-1" | ||
|+ Tritomere tunings | |+ style="font-size: 105%;" | Tritomere tunings—order 2 | ||
|- | |- | ||
! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ||
|- | |- | ||
| 28 || >, /, />, | | 28 || >, /, />, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑↑\, ↑↑<, ↑↑, t<, t, <br />t>, #↓↓, #↓↓>, #↓↓/, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #\<, #\, #<, # || 7 & 280 || 280, 287, 294c | ||
|- | |- | ||
| 30 || >, /, />, | | 30 || >, /, />, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑↑\, ↑↑<, ↑↑, ↑↑>, t<, t, <br />t>, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #\<, #\, #<, # || Neutral trinity restriction || 304, 311, 318, 325c | ||
|- | |- | ||
| 32 || >, /, />, | | 32 || >, /, />, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑↑\, ↑↑<, ↑↑, ↑↑>, ↑↑/, t<, t, <br />t>, #↓↓\, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #\<, #\, #<, # || 7 & 335 || 321ce, 328, 335, 342, 349, 356ce | ||
|- | |- | ||
| 34 || >, /, />, | | 34 || >, /, />, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑↑\, ↑↑<, ↑↑, ↑↑>, ↑↑/, ↑↑/>, t<, t, <br />t>, #↓↓\<, #↓↓\, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #\<, #\, #<, # || 7 & 359 || 352c, 359, 366, 373 | ||
|- | |- | ||
| 36 || >, /, />, | | 36 || >, /, />, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑↑\, ↑↑<, ↑↑, ↑↑>, ↑↑/, ↑↑/>, ↑↑//, t<, t, <br />t>, #↓↓\\, #↓↓\<, #↓↓\, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #\<, #\, #<, # || 7 & 390 || 383c, 390, 397 | ||
|} | |} | ||
Line 231: | Line 229: | ||
=== Hemitritomere tunings === | === Hemitritomere tunings === | ||
{| class="wikitable center-1" | {| class="wikitable center-1" | ||
|+ Hemitritomere tunings | |+ style="font-size: 105%;" | Hemitritomere tunings | ||
|- | |- | ||
! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ||
|- | |- | ||
| 12 || >, | | 12 || >, ↑<, ↑, ↑>, t<, t, t>, #↓<, #↓, #↓>, #<, # || 7 & 109 || 109, 116, 123ce | ||
|- | |- | ||
| 14 || >, | | 14 || >, ↑<, ↑, ↑>, ↑/, t<, t, t>, #↓\, #↓<, #↓, #↓>, #<, # || 7 & 140 || 133, 140, 147e | ||
|- | |- | ||
| 16 || >, | | 16 || >, ↑<, ↑, ↑>, ↑↑<, ↑↑, t<, t, t>, #↓↓, #↓↓>, #↓<, #↓, #↓>, #<, # || 7 & 157 || 157, 164, 171e | ||
|} | |} | ||
=== Tetartomere tunings === | === Tetartomere tunings === | ||
{| class="wikitable center-1" | {| class="wikitable center-1" | ||
|+ Tetartomere tunings | |+ style="font-size: 105%;" | Tetartomere tunings—order 1 | ||
|- | |- | ||
! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ||
|- | |- | ||
| 19 || /, //, | | 19 || /, //, ↑\, ↑, ↑/, ↑//, ↑↑\, ↑↑, t<, t>, #↓↓, #↓↓/, #↓\\, #↓\, #↓, #↓/, #\\, #\, # || 7 & 193 || 186e, 193, 200, 207c | ||
|- | |- | ||
| 21 || /, //, | | 21 || /, //, ↑\, ↑, ↑/, ↑//, ↑↑\, ↑↑, ↑↑/, t<, t>, #↓↓\, #↓↓, #↓↓/, #↓\\, #↓\, #↓, #↓/, #\\, #\, # || Brahmagupta restriction || 210e, 217, 224, 231, 238c | ||
|- | |- | ||
| 23 || /, //, | | 23 || /, //, ↑\, ↑, ↑/, ↑//, ↑↑\, ↑↑, ↑↑/, ↑↑//, t<, t>, #↓↓\\, #↓↓\, #↓↓, #↓↓/, #↓\\, #↓\, #↓, #↓/, #\\, #\, # || 7 & 241 || 234c, 241, 248, 255 | ||
|} | |} | ||
{| class="wikitable center-1" | {| class="wikitable center-1" | ||
|+ Tetartomere tunings | |+ style="font-size: 105%;" | Tetartomere tunings—order 2 | ||
|- | |- | ||
! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ||
|- | |- | ||
| 40 || >, /, />, //, | | 40 || >, /, />, //, ↑\<, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑//, ↑↑\<, ↑↑\, ↑↑<, ↑↑, ↑↑>, ↑↑/, t<, t, <br />t>, #↓↓\, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓↓/>, #↓\\, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #↓/>, #\\, #\<, #\, #<, # || 7 & 417 || 410e, 417, 424, 431c | ||
|- | |- | ||
| 42 || >, /, />, //, | | 42 || >, /, />, //, ↑\<, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑//, ↑↑\<, ↑↑\, ↑↑<, ↑↑, ↑↑>, ↑↑/, ↑↑/>, t<, t, <br />t>, #↓↓\<, #↓↓\, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓↓/>, #↓\\, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #↓/>, #\\, #\<, #\, #<, # || Neutral brahmagupta restriction || 434e, 441, 448, 455 | ||
|- | |- | ||
| 44 || >, /, />, //, | | 44 || >, /, />, //, ↑\<, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑//, ↑↑\<, ↑↑\, ↑↑<, ↑↑, ↑↑>, ↑↑/, ↑↑/>, ↑↑//, t<, t, <br />t>, #↓↓\\, #↓↓\<, #↓↓\, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓↓/>, #↓\\, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #↓/>, #\\, #\<, #\, #<, # || 7 & 472 || 458ce, 465, 472, 479 | ||
|} | |} | ||
Line 271: | Line 269: | ||
=== Pemptomere tunings === | === Pemptomere tunings === | ||
{| class="wikitable center-1" | {| class="wikitable center-1" | ||
|+ Pemptomere tunings | |+ style="font-size: 105%;" | Pemptomere tunings—order 1 | ||
|- | |- | ||
! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ||
|- | |- | ||
| 25 || /, //, | | 25 || /, //, ↑\\, ↑\, ↑, ↑/, ↑//, ↑↑\\, ↑↑\, ↑↑, ↑↑/, t<, t>, #↓↓\, #↓↓, #↓↓/, #↓↓//, #↓\\, #↓\, #↓, #↓/, #↓//, #\\, #\, # || 7 & 258 || 251e, 258, 265, 272c | ||
|- | |- | ||
| 27 || /, //, | | 27 || /, //, ↑\\, ↑\, ↑, ↑/, ↑//, ↑↑\\, ↑↑\, ↑↑, ↑↑/, ↑↑//, t<, t>, #↓↓\\, #↓↓\, #↓↓, #↓↓/, #↓↓//, #↓\\, #↓\, #↓, #↓/, #↓//, #\\, #\, # || 7 & 289 || 275e, 282, 289, 296, 303c | ||
|} | |} | ||
{| class="wikitable center-1" | {| class="wikitable center-1" | ||
|+ Pemptomere tunings | |+ style="font-size: 105%;" | Pemptomere tunings—order 2 | ||
|- | |- | ||
! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ||
|- | |- | ||
| 52 || >, /, />, //, //>, | | 52 || >, /, />, //, //>, ↑\\, ↑\<, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑//, ↑//>, ↑↑\\, ↑↑\<, ↑↑\, ↑↑<, ↑↑, ↑↑>, ↑↑/, ↑↑/>, ↑↑//, t<, t, <br />t>, #↓↓\\, #↓↓\<, #↓↓\, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓↓/>, #↓\\<, #↓\\, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #↓/>, #\\<, #\\, #\<, #\, #<, # || 7 & 554 || 547e, 554, 561c | ||
|- | |- | ||
| 54 || >, /, />, //, //>, | | 54 || >, /, />, //, //>, ↑\\, ↑\<, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑//, ↑//>, ↑↑\\, ↑↑\<, ↑↑\, ↑↑<, ↑↑, ↑↑>, ↑↑/, ↑↑/>, ↑↑//, ↑↑//>, t<, t, <br />t>, #↓↓\\<, #↓↓\\, #↓↓\<, #↓↓\, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓↓/>, #↓\\<, #↓\\, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #↓/>, #\\<, #\\, #\<, #\, #<, # || Neutral 7 & 289 || 571e, 578, 585 | ||
|} | |} | ||
Line 294: | Line 292: | ||
=== Hemipemptomere tunings === | === Hemipemptomere tunings === | ||
{| class="wikitable center-1" | {| class="wikitable center-1" | ||
|+ Hemipemptomere tunings | |+ style="font-size: 105%;" | Hemipemptomere tunings | ||
|- | |- | ||
! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ! Sharpness !! Accidentals !! Temperament !! Equal temperaments | ||
|- | |- | ||
| 24 || >, /, | | 24 || >, /, ↑\, ↑<, ↑, ↑>, ↑/, ↑↑\, ↑↑<, ↑↑, t<, t, t>, #↓↓, #↓↓>, #↓↓/, #↓\, #↓<, #↓, #↓>, #↓/, #\, #<, # || 7 & 246 || 239, 246, 253, 260c | ||
|- | |- | ||
| 26 || >, /, | | 26 || >, /, ↑\, ↑<, ↑, ↑>, ↑/, ↑↑\, ↑↑<, ↑↑, ↑↑>, t<, t, t>, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓\, #↓<, #↓, #↓>, #↓/, #\, #<, # || 7 & 270 || 256c, 263, 270, 277, 284, 291ce | ||
|- | |- | ||
| 28 || >, /, | | 28 || >, /, ↑\, ↑<, ↑, ↑>, ↑/, ↑↑\, ↑↑<, ↑↑, ↑↑>, ↑↑/, t<, t, t>, #↓↓\, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓\, #↓<, #↓, #↓>, #↓/, #\, #<, # || 7 & 294 || 287c, 294, 301, 308e | ||
|} | |} | ||
== Connections to interval naming == | == Connections to interval naming == | ||
Courtesy of collaboration between Aura and [[Lillian Hearne]], | Courtesy of collaboration between Aura and [[Lillian Hearne]], syntonic–rastmic subchroma notation also has connections to [[SKULO interval names]] in which raising by the rastma is represented by "R" and lowering by the rastma is represented by "r". | ||
== Notes == | == Notes == | ||
<references/> | <references /> | ||
{{Navbox notation}} |
Latest revision as of 18:28, 11 February 2025
Syntonic–rastmic subchroma notation is a notation scheme developed by Aura et al.[1] that is an expansion to the neutral circle-of-fifths notation.
While the neutral circle-of-fifths notation models the 2.3 subgroup of just intonation, with the neutral intervals capable of roughly modeling the harmonic 11, the syntonic–rastmic subchroma notation accurately captures the characteristics of the 2.3.5.11 subgroup, and is fit for a wider variety of equal temperaments and multirank temperaments. As it tries to strike a balance between the number and semantic consistency of the accidentals, it has the following three basic building blocks of accidentals: the conventional accidentals, the syntonic and demisyntonic accidentals, and the rastmic and demirastmic accidentals, detailed below.
Accidentals
Conventional accidentals
As in neutral circle-of-fifths notation, the demisharp raises the pitch by half a chromatic semitone, and the demiflat lowers the pitch by the same amount.
Name | Ratio | Monzo | Textual Representation |
---|---|---|---|
… | … | … | … |
Double sharp | (2187/2048)2 | [-22 14⟩ | x |
Sesquisharp | (2187/2048)3/2 | [-33/2 21/2⟩ | t# |
Sharp | (2187/2048)1 | [-11 7⟩ | # |
Demisharp | (2187/2048)1/2 | [-11/2 7/2⟩ | t |
(None) | (2187/2048)0 | [0⟩ | |
Demiflat | (2187/2048)−1/2 | [11/2 -7/2⟩ | d |
Flat | (2187/2048)−1 | [11 -7⟩ | b |
Sesquiflat | (2187/2048)−3/2 | [33/2 -21/2⟩ | db |
Double flat | (2187/2048)−2 | [22 -14⟩ | bb |
… | … | … | … |
Syntonic and demisyntonic accidentals

The syntonic and demisyntonic accidentals model the harmonic 5. The synsharp raises the pitch by a syntonic comma. The synflat lowers the pitch by the same amount.
Name | Ratio | Monzo | Textual Representation |
---|---|---|---|
… | … | … | … |
Synsharp | (81/80)1 | [-4 4 -1⟩ | ↑ |
Demisynsharp | (81/80)1/2 | [-2 2 -1/2⟩ | ^ |
(None) | (81/80)0 | [0⟩ | |
Demisynflat | (81/80)−1/2 | [2 -2 1/2⟩ | v |
Synflat | (81/80)−1 | [4 -4 1⟩ | ↓ |
… | … | … | … |
Rastmic and demirastmic accidentals


The rastmic and demirastmic accidentals model the harmonic 11. The demirasharp raises the pitch by half a rastma. The demiraflat lowers the pitch by the same amount.
Name | Ratio | Subgroup Monzo (2.3.5.11) |
Textual Representation |
---|---|---|---|
… | … | … | … |
Double rasharp | (243/242)2 | [-2 10 0 -4⟩ | // |
Sesquirasharp | (243/242)3/2 | [-3/2 15/2 0 -3⟩ | >/ |
Rasharp | (243/242)1 | [-1 5 0 -2⟩ | / |
Demirasharp | (243/242)1/2 | [-1/2 5/2 0 -1⟩ | > |
(None) | (243/242)0 | [0⟩ | |
Demiraflat | (243/242)−1/2 | [1/2 -5/2 0 1⟩ | < |
Raflat | (243/242)−1 | [1 -5 0 2⟩ | \ |
Sesquiraflat | (243/242)−3/2 | [3/2 -15/2 0 3⟩ | <\ |
Double raflat | (243/242)−2 | [2 -10 0 4⟩ | \\ |
… | … | … | … |
Combined accidentals

The demisharp/demiflat and the demirasharp/demiraflat are rarely used alone since they are irrational. They are usually combined for the following accidentals. These are the most common quartertones.
Name | Ratio | Subgroup Monzo (2.3.5.11) |
Textual Representation |
---|---|---|---|
Tendodemisharp | 729/704 | [-6 6 0 -1⟩ | t> |
Artodemisharp | 33/32 | [-5 1 0 1⟩ | t< |
Tendodemiflat | 32/33 | [5 -1 0 -1⟩ | d> |
Artodemiflat | 704/729 | [6 -6 0 1⟩ | d< |
Natural accidental
The natural accidental cancels all pitch alterations.
Notation guide for common tunings
The syntonic–rastmic subchroma notation is closely related to the syntonic-rastmic equivalence continuum, in that the accidental settings are similar among tunings of a particular equivalence number. Due to enharmonic equivalences, however, each tuning system can take many accidental settings. Each case shown in the tables below is only one of them. Users should choose the combination in question according to the semantics.
Equal temperaments are shown if the corresponding edo has {1, 3, 9}-diamond consistency. Others can be notated as subsets or be extrapolated.
Neutral tunings
Sharpness | Accidentals | Temperament | Equal temperaments |
---|---|---|---|
2 | t, # | Mohaha | 10e, 17, 24, 31, 38 |
4 | ↑, t, #↓, # | Tetracot | 27e, 34, 41, 48, 55c |
6 | ↑, t↓, t, t↑, #↓, # | Larry | 51ce, 58, 65, 72, 79 |
8 | ↑, ↑↑, t↓, t, t↑, #↓↓, #↓, # | 7 & 89 | 82c, 89, 96 |
55 can be notated as a mohaha tuning. 75 can be notated as a tetracot tuning. 123 and 137 can be notated as larry tunings.
Protomere tunings
Sharpness | Accidentals | Temperament | Equal temperaments |
---|---|---|---|
3 | t<, t>, # | Porcupine restriction | 15, 22, 29, 36ce |
5 | ↑, t<, t>, #↓, # | Hitchcock restriction | 39, 46, 53, 60e |
7 | ↑, ↑↑, t<, t>, #↓↓, #↓, # | Absurdity extension | 63c, 70, 77, 84e |
Sharpness | Accidentals | Temperament | Equal temperaments |
---|---|---|---|
6 | >, t<, t, t>, #<, # | Neutral porcupine restriction | 51, 58ce |
8 | >, ↑, t<, t, t>, #↓, #<, # | Tetracot extension | 68, 75, 82e |
10 | >, ↑, ↑>, t<, t, t>, #↓<, #↓, #<, # | Neutral hitchcock restriction | 92, 99, 106e |
51 and 99 can be notated as either order 1 or order 2.
Deuteromere tunings
Sharpness | Accidentals | Temperament | Equal temperaments |
---|---|---|---|
7 | /, ↑, t<, t>, #↓, #\, # | Sevond extension | 56, 63, 70c |
9 | /, ↑, ↑/, t<, t>, #↓\, #↓, #\, # | 7 & 87 | 80, 87, 94, 101c |
11 | /, ↑, ↑/, ↑↑, t<, t>, #↓↓, #↓\, #↓, #\, # | Twentcufo | 104c, 111, 118, 125, 132e |
13 | /, ↑, ↑/, ↑↑, ↑↑/, t<, t>, #↓↓\, #↓↓, #↓\, #↓, #\, # | 7 & 149 | 135c, 142, 149, 156e |
Sharpness | Accidentals | Temperament | Equal temperaments |
---|---|---|---|
18 | >, /, ↑<, ↑, ↑>, ↑/, ↑↑<, t<, t, t>, #↓↓>, #↓\, #↓<, #↓, #↓>, #\, #<, # |
Neutral 7 & 87 | 174, 181, 188c |
20 | >, /, ↑<, ↑, ↑>, ↑/, ↑↑<, ↑↑, t<, t, t>, #↓↓, #↓↓>, #↓\, #↓<, #↓, #↓>, #\, #<, # |
7 & 205 | 198, 205, 212, 219ce |
22 | >, /, ↑<, ↑, ↑>, ↑/, ↑↑<, ↑↑, ↑↑>, t<, t, t>, #↓↓<, #↓↓, #↓↓>, #↓\, #↓<, #↓, #↓>, #\, #<, # |
Neutral twentcufo | 222c, 229, 236, 243e |
181, 229, and 243e can be notated as either order 1 or order 2.
Tritomere tunings
Sharpness | Accidentals | Temperament | Equal temperaments |
---|---|---|---|
13 | /, ↑\, ↑, ↑/, ↑↑\, t<, t>, #↓↓/, #↓\, #↓, #↓/, #\, # | 7 & 121 | 121, 128, 135, 142c |
15 | /, ↑\, ↑, ↑/, ↑↑\, ↑↑, t<, t>, #↓↓, #↓↓/, #↓\, #↓, #↓/, #\, # | Trinity restriction | 145, 152, 159, 166, 173c |
17 | /, ↑\, ↑, ↑/, ↑↑\, ↑↑, ↑↑/, t<, t>, #↓↓\, #↓↓, #↓↓/, #↓\, #↓, #↓/, #\, # | 7 & 183 | 169c, 176, 183, 190, 197e |
19 | /, ↑\, ↑, ↑/, ↑↑\, ↑↑, ↑↑/, ↑↑//, t<, t>, #↓↓\\, #↓↓\, #↓↓, #↓↓/, #↓\, #↓, #↓/, #\, # | 7 & 207 | 200c, 207, 214 |
Sharpness | Accidentals | Temperament | Equal temperaments |
---|---|---|---|
28 | >, /, />, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑↑\, ↑↑<, ↑↑, t<, t, t>, #↓↓, #↓↓>, #↓↓/, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #\<, #\, #<, # |
7 & 280 | 280, 287, 294c |
30 | >, /, />, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑↑\, ↑↑<, ↑↑, ↑↑>, t<, t, t>, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #\<, #\, #<, # |
Neutral trinity restriction | 304, 311, 318, 325c |
32 | >, /, />, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑↑\, ↑↑<, ↑↑, ↑↑>, ↑↑/, t<, t, t>, #↓↓\, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #\<, #\, #<, # |
7 & 335 | 321ce, 328, 335, 342, 349, 356ce |
34 | >, /, />, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑↑\, ↑↑<, ↑↑, ↑↑>, ↑↑/, ↑↑/>, t<, t, t>, #↓↓\<, #↓↓\, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #\<, #\, #<, # |
7 & 359 | 352c, 359, 366, 373 |
36 | >, /, />, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑↑\, ↑↑<, ↑↑, ↑↑>, ↑↑/, ↑↑/>, ↑↑//, t<, t, t>, #↓↓\\, #↓↓\<, #↓↓\, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #\<, #\, #<, # |
7 & 390 | 383c, 390, 397 |
311, 325c, 359 and 373 can be notated as either order 1 or order 2.
Hemitritomere tunings
Sharpness | Accidentals | Temperament | Equal temperaments |
---|---|---|---|
12 | >, ↑<, ↑, ↑>, t<, t, t>, #↓<, #↓, #↓>, #<, # | 7 & 109 | 109, 116, 123ce |
14 | >, ↑<, ↑, ↑>, ↑/, t<, t, t>, #↓\, #↓<, #↓, #↓>, #<, # | 7 & 140 | 133, 140, 147e |
16 | >, ↑<, ↑, ↑>, ↑↑<, ↑↑, t<, t, t>, #↓↓, #↓↓>, #↓<, #↓, #↓>, #<, # | 7 & 157 | 157, 164, 171e |
Tetartomere tunings
Sharpness | Accidentals | Temperament | Equal temperaments |
---|---|---|---|
19 | /, //, ↑\, ↑, ↑/, ↑//, ↑↑\, ↑↑, t<, t>, #↓↓, #↓↓/, #↓\\, #↓\, #↓, #↓/, #\\, #\, # | 7 & 193 | 186e, 193, 200, 207c |
21 | /, //, ↑\, ↑, ↑/, ↑//, ↑↑\, ↑↑, ↑↑/, t<, t>, #↓↓\, #↓↓, #↓↓/, #↓\\, #↓\, #↓, #↓/, #\\, #\, # | Brahmagupta restriction | 210e, 217, 224, 231, 238c |
23 | /, //, ↑\, ↑, ↑/, ↑//, ↑↑\, ↑↑, ↑↑/, ↑↑//, t<, t>, #↓↓\\, #↓↓\, #↓↓, #↓↓/, #↓\\, #↓\, #↓, #↓/, #\\, #\, # | 7 & 241 | 234c, 241, 248, 255 |
Sharpness | Accidentals | Temperament | Equal temperaments |
---|---|---|---|
40 | >, /, />, //, ↑\<, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑//, ↑↑\<, ↑↑\, ↑↑<, ↑↑, ↑↑>, ↑↑/, t<, t, t>, #↓↓\, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓↓/>, #↓\\, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #↓/>, #\\, #\<, #\, #<, # |
7 & 417 | 410e, 417, 424, 431c |
42 | >, /, />, //, ↑\<, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑//, ↑↑\<, ↑↑\, ↑↑<, ↑↑, ↑↑>, ↑↑/, ↑↑/>, t<, t, t>, #↓↓\<, #↓↓\, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓↓/>, #↓\\, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #↓/>, #\\, #\<, #\, #<, # |
Neutral brahmagupta restriction | 434e, 441, 448, 455 |
44 | >, /, />, //, ↑\<, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑//, ↑↑\<, ↑↑\, ↑↑<, ↑↑, ↑↑>, ↑↑/, ↑↑/>, ↑↑//, t<, t, t>, #↓↓\\, #↓↓\<, #↓↓\, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓↓/>, #↓\\, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #↓/>, #\\, #\<, #\, #<, # |
7 & 472 | 458ce, 465, 472, 479 |
441 and 455 can be notated as either order 1 or order 2.
Pemptomere tunings
Sharpness | Accidentals | Temperament | Equal temperaments |
---|---|---|---|
25 | /, //, ↑\\, ↑\, ↑, ↑/, ↑//, ↑↑\\, ↑↑\, ↑↑, ↑↑/, t<, t>, #↓↓\, #↓↓, #↓↓/, #↓↓//, #↓\\, #↓\, #↓, #↓/, #↓//, #\\, #\, # | 7 & 258 | 251e, 258, 265, 272c |
27 | /, //, ↑\\, ↑\, ↑, ↑/, ↑//, ↑↑\\, ↑↑\, ↑↑, ↑↑/, ↑↑//, t<, t>, #↓↓\\, #↓↓\, #↓↓, #↓↓/, #↓↓//, #↓\\, #↓\, #↓, #↓/, #↓//, #\\, #\, # | 7 & 289 | 275e, 282, 289, 296, 303c |
Sharpness | Accidentals | Temperament | Equal temperaments |
---|---|---|---|
52 | >, /, />, //, //>, ↑\\, ↑\<, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑//, ↑//>, ↑↑\\, ↑↑\<, ↑↑\, ↑↑<, ↑↑, ↑↑>, ↑↑/, ↑↑/>, ↑↑//, t<, t, t>, #↓↓\\, #↓↓\<, #↓↓\, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓↓/>, #↓\\<, #↓\\, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #↓/>, #\\<, #\\, #\<, #\, #<, # |
7 & 554 | 547e, 554, 561c |
54 | >, /, />, //, //>, ↑\\, ↑\<, ↑\, ↑<, ↑, ↑>, ↑/, ↑/>, ↑//, ↑//>, ↑↑\\, ↑↑\<, ↑↑\, ↑↑<, ↑↑, ↑↑>, ↑↑/, ↑↑/>, ↑↑//, ↑↑//>, t<, t, t>, #↓↓\\<, #↓↓\\, #↓↓\<, #↓↓\, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓↓/>, #↓\\<, #↓\\, #↓\<, #↓\, #↓<, #↓, #↓>, #↓/, #↓/>, #\\<, #\\, #\<, #\, #<, # |
Neutral 7 & 289 | 571e, 578, 585 |
571e and 585 can be notated as either order 1 or order 2.
Hemipemptomere tunings
Sharpness | Accidentals | Temperament | Equal temperaments |
---|---|---|---|
24 | >, /, ↑\, ↑<, ↑, ↑>, ↑/, ↑↑\, ↑↑<, ↑↑, t<, t, t>, #↓↓, #↓↓>, #↓↓/, #↓\, #↓<, #↓, #↓>, #↓/, #\, #<, # | 7 & 246 | 239, 246, 253, 260c |
26 | >, /, ↑\, ↑<, ↑, ↑>, ↑/, ↑↑\, ↑↑<, ↑↑, ↑↑>, t<, t, t>, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓\, #↓<, #↓, #↓>, #↓/, #\, #<, # | 7 & 270 | 256c, 263, 270, 277, 284, 291ce |
28 | >, /, ↑\, ↑<, ↑, ↑>, ↑/, ↑↑\, ↑↑<, ↑↑, ↑↑>, ↑↑/, t<, t, t>, #↓↓\, #↓↓<, #↓↓, #↓↓>, #↓↓/, #↓\, #↓<, #↓, #↓>, #↓/, #\, #<, # | 7 & 294 | 287c, 294, 301, 308e |
Connections to interval naming
Courtesy of collaboration between Aura and Lillian Hearne, syntonic–rastmic subchroma notation also has connections to SKULO interval names in which raising by the rastma is represented by "R" and lowering by the rastma is represented by "r".
Notes
- ↑ Other contributors include Flora Canou and HEHEHE I AM A SUPAHSTAR SAGA.
View • Talk • EditMusical notation | |
---|---|
Universal | Sagittal notation |
Just intonation | Functional Just System • Ben Johnston's notation (Johnston–Copper notation) • Helmholtz–Ellis notation • Color notation |
MOS scales | Diamond-mos notation • KISS notation (Quasi-diatonic MOS notation) |
Temperaments | Circle-of-fifths notation • Ups and downs notation (alternative symbols) • Syntonic–rastmic subchroma notation • Extended meantone notation • Fractional sharp notation |
See musical notation for a longer list of systems by category. See Category:Notation for the most complete, comprehensive list, but not sorted by category. |