157edo: Difference between revisions
m →Regular temperament properties: correction |
m changed EDO intro to ED intro |
||
(10 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | == Theory == | ||
157et tempers out 78732/78125 ([[sensipent comma]]) and | 157et [[tempering out|tempers out]] 78732/78125 ([[sensipent comma]]) and {{monzo| 37 -16 -5 }} ([[quinticosiennic comma]]) in the 5-limit; [[2401/2400]], [[5120/5103]], and 110592/109375 in the 7-limit ([[support]]ing the [[hemififths]] and the [[catafourth]] temperaments). Using the [[patent val]], it tempers out [[176/175]], 1331/1323, 3773/3750 and [[8019/8000]] in the 11-limit; [[351/350]], [[352/351]], [[847/845]], [[1573/1568]], and [[2197/2187]] in the 13-limit. | ||
=== Odd harmonics === | |||
{{Harmonics in equal|157}} | |||
=== | === Subsets and supersets === | ||
157edo is the 37th [[prime edo]]. | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | |- | ||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve stretch (¢) | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning error | ! colspan="2" | Tuning error | ||
|- | |- | ||
Line 22: | Line 25: | ||
| 2.3 | | 2.3 | ||
| {{monzo| 249 -157 }} | | {{monzo| 249 -157 }} | ||
| | | {{mapping| 157 249 }} | ||
| | | −0.388 | ||
| 0.388 | | 0.388 | ||
| 5.08 | | 5.08 | ||
Line 29: | Line 32: | ||
| 2.3.5 | | 2.3.5 | ||
| 78732/78125, {{val| 37 -16 -5 }} | | 78732/78125, {{val| 37 -16 -5 }} | ||
| | | {{mapping| 157 249 365 }} | ||
| | | −0.760 | ||
| 0.614 | | 0.614 | ||
| 8.04 | | 8.04 | ||
Line 36: | Line 39: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 2401/2400, 5120/5103, 78732/78125 | | 2401/2400, 5120/5103, 78732/78125 | ||
| | | {{mapping| 157 249 365 441 }} | ||
| | | −0.737 | ||
| 0.533 | | 0.533 | ||
| 6.98 | | 6.98 | ||
Line 43: | Line 46: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 176/175, 1331/1323, 2401/2400, 5120/5103 | | 176/175, 1331/1323, 2401/2400, 5120/5103 | ||
| | | {{mapping| 157 249 365 441 543 }} | ||
| | | −0.532 | ||
| 0.629 | | 0.629 | ||
| 8.24 | | 8.24 | ||
Line 50: | Line 53: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 176/175, 351/350, 847/845, 1331/1323, 2197/2187 | | 176/175, 351/350, 847/845, 1331/1323, 2197/2187 | ||
| | | {{mapping| 157 249 365 441 543 581 }} | ||
| | | −0.454 | ||
| 0.600 | | 0.600 | ||
| 7.86 | | 7.86 | ||
Line 57: | Line 60: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 176/175, 256/255, 351/350, 442/441, 715/714, 2197/2187 | | 176/175, 256/255, 351/350, 442/441, 715/714, 2197/2187 | ||
| | | {{mapping| 157 249 365 441 543 581 642 }} | ||
| | | −0.461 | ||
| 0.556 | | 0.556 | ||
| 7.28 | | 7.28 | ||
Line 64: | Line 67: | ||
| 2.3.5.7.11.13.17.19 | | 2.3.5.7.11.13.17.19 | ||
| 176/175, 256/255, 286/285, 351/350, 361/360, 442/441, 476/475 | | 176/175, 256/255, 286/285, 351/350, 361/360, 442/441, 476/475 | ||
| | | {{mapping| 157 249 365 441 543 581 642 667 }} | ||
| | | −0.420 | ||
| 0.531 | | 0.531 | ||
| 6.95 | | 6.95 | ||
Line 71: | Line 74: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per | |- | ||
! Generator | ! Periods<br />per 8ve | ||
! Cents | ! Generator* | ||
! Associated<br>ratio | ! Cents* | ||
! | ! Associated<br />ratio* | ||
! Temperaments | |||
|- | |||
| 1 | |||
| 13\157 | |||
| 99.36 | |||
| 18/17 | |||
| [[Quinticosiennic]] | |||
|- | |||
| 1 | |||
| 23\157 | |||
| 175.80 | |||
| 72/65 | |||
| [[Quadrafifths]] | |||
|- | |- | ||
| 1 | | 1 | ||
Line 89: | Line 105: | ||
| 428.03 | | 428.03 | ||
| 2800/2187 | | 2800/2187 | ||
| [[ | | [[Geb]] / [[osiris]] | ||
|- | |- | ||
| 1 | | 1 | ||
Line 95: | Line 111: | ||
| 443.31 | | 443.31 | ||
| 162/125 | | 162/125 | ||
| [[ | | [[Warrior]] | ||
|- | |- | ||
| 1 | | 1 | ||
Line 103: | Line 119: | ||
| [[Catafourth]] | | [[Catafourth]] | ||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
[[ | |||
[[ |
Latest revision as of 18:01, 19 February 2025
← 156edo | 157edo | 158edo → |
157 equal divisions of the octave (abbreviated 157edo or 157ed2), also called 157-tone equal temperament (157tet) or 157 equal temperament (157et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 157 equal parts of about 7.64 ¢ each. Each step represents a frequency ratio of 21/157, or the 157th root of 2.
Theory
157et tempers out 78732/78125 (sensipent comma) and [37 -16 -5⟩ (quinticosiennic comma) in the 5-limit; 2401/2400, 5120/5103, and 110592/109375 in the 7-limit (supporting the hemififths and the catafourth temperaments). Using the patent val, it tempers out 176/175, 1331/1323, 3773/3750 and 8019/8000 in the 11-limit; 351/350, 352/351, 847/845, 1573/1568, and 2197/2187 in the 13-limit.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.23 | +3.50 | +1.87 | +2.46 | -1.00 | +0.24 | -2.92 | +2.05 | +0.58 | +3.10 | -1.52 |
Relative (%) | +16.1 | +45.7 | +24.5 | +32.2 | -13.1 | +3.1 | -38.2 | +26.8 | +7.5 | +40.6 | -19.9 | |
Steps (reduced) |
249 (92) |
365 (51) |
441 (127) |
498 (27) |
543 (72) |
581 (110) |
613 (142) |
642 (14) |
667 (39) |
690 (62) |
710 (82) |
Subsets and supersets
157edo is the 37th prime edo.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [249 -157⟩ | [⟨157 249]] | −0.388 | 0.388 | 5.08 |
2.3.5 | 78732/78125, ⟨37 -16 -5] | [⟨157 249 365]] | −0.760 | 0.614 | 8.04 |
2.3.5.7 | 2401/2400, 5120/5103, 78732/78125 | [⟨157 249 365 441]] | −0.737 | 0.533 | 6.98 |
2.3.5.7.11 | 176/175, 1331/1323, 2401/2400, 5120/5103 | [⟨157 249 365 441 543]] | −0.532 | 0.629 | 8.24 |
2.3.5.7.11.13 | 176/175, 351/350, 847/845, 1331/1323, 2197/2187 | [⟨157 249 365 441 543 581]] | −0.454 | 0.600 | 7.86 |
2.3.5.7.11.13.17 | 176/175, 256/255, 351/350, 442/441, 715/714, 2197/2187 | [⟨157 249 365 441 543 581 642]] | −0.461 | 0.556 | 7.28 |
2.3.5.7.11.13.17.19 | 176/175, 256/255, 286/285, 351/350, 361/360, 442/441, 476/475 | [⟨157 249 365 441 543 581 642 667]] | −0.420 | 0.531 | 6.95 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 13\157 | 99.36 | 18/17 | Quinticosiennic |
1 | 23\157 | 175.80 | 72/65 | Quadrafifths |
1 | 46\157 | 351.59 | 49/40 | Hemififths |
1 | 56\157 | 428.03 | 2800/2187 | Geb / osiris |
1 | 58\157 | 443.31 | 162/125 | Warrior |
1 | 64\157 | 489.17 | 250/189 | Catafourth |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct