16ed5/2: Difference between revisions
No edit summary |
m Removing from Category:Ed5/2 using Cat-a-lot |
||
(21 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
'''16ED5/2''' is the equal division of the [[5/2]] interval into 16 parts of 99.1446 [[cent]]s each. | {{Infobox ET}} | ||
'''16ED5/2''' is the equal division of the [[5/2]] interval into 16 parts of 99.1446 [[cent]]s each. 16 equal divisions of the just major tenth is not a "real" xenharmonic tuning; it is a slightly compressed version of the normal [[12edo|12-tone scale]]. | |||
== Intervals == | |||
{| class="wikitable" | |||
|+ | |||
! Degrees | |||
! colspan="3" | Enneatonic | |||
! Cents | |||
|- | |||
| 1 | |||
| 1#/2b | |||
| colspan="2" | F#/Gb | |||
| 99.145 | |||
|- | |||
| 2 | |||
| 2 | |||
| colspan="2" | G | |||
| 198.289 | |||
|- | |||
| 3 | |||
| 2#/3b | |||
| G#/Jb | |||
| ''G#/Ab'' | |||
| 297.433 | |||
|- | |||
| 4 | |||
| 3 | |||
| J | |||
| ''A'' | |||
| 396.578 | |||
|- | |||
| 5 | |||
| 3#/4b | |||
| J#/Ab | |||
| ''A#/Bb'' | |||
| 495.723 | |||
|- | |||
| 6 | |||
| 4 | |||
| A | |||
| ''B'' | |||
| 594.868 | |||
|- | |||
| 7 | |||
| 5 | |||
| B | |||
| ''H'' | |||
| 694.012 | |||
|- | |||
| 8 | |||
| 5#/6b | |||
| B#/Hb | |||
| ''H#/Cb'' | |||
| 793.157 | |||
|- | |||
| 9 | |||
| 6 | |||
| H | |||
| ''C'' | |||
| 892.3015 | |||
|- | |||
| 10 | |||
| 6#/7b | |||
| H#/Cb | |||
| ''C#/Db'' | |||
| 991.446 | |||
|- | |||
| 11 | |||
| 7 | |||
| C | |||
| ''D'' | |||
| 1090.591 | |||
|- | |||
| 12 | |||
| 7#/8b | |||
| C#/Db | |||
| ''D#/Sb'' | |||
| 1189.735 | |||
|- | |||
| 13 | |||
| 8 | |||
| D | |||
| ''S'' | |||
| 1288.88 | |||
|- | |||
| 14 | |||
| 8#/9b | |||
| D#/Eb | |||
| ''S#/Eb'' | |||
| 1388.0245 | |||
|- | |||
| 15 | |||
| 9 | |||
| colspan="2" | E | |||
| 1487.169 | |||
|- | |||
| 16 | |||
| 1 | |||
| colspan="2" | F | |||
| 1586.314 | |||
|} | |||
== Harmonics == | |||
{{Harmonics in equal | |||
| steps = 16 | |||
| num = 5 | |||
| denom = 2 | |||
}} | |||
{{Harmonics in equal | |||
| steps = 16 | |||
| num = 5 | |||
| denom = 2 | |||
| start = 12 | |||
| collapsed = 1 | |||
}} | |||
== Regular temperaments == | |||
{{Main| Quintaleap family }} | |||
16ed5/2 can also be thought of as a [[generator]] of the 2.3.5.17.19 [[subgroup temperament]] which tempers out 256/255, 361/360, and 4624/4617, which is a [[cluster temperament]] with 12 clusters of notes in an octave (''quintaleap'' temperament). This temperament is supported by {{Optimal ET sequence| 12-, 109-, 121-, 133-, 145- }}, and [[157edo]]. | |||
Tempering out 400/399 (equating 20/19 and 21/20) leads to ''[[quintupole]]'' (12&121), and tempering out 476/475 (equating 19/17 with 28/25) leads to ''[[quinticosiennic]]'' (12&145). | |||
Another temperament related to 16ed5/2 is ''[[quintapole]]'' (12&85). It is practically identical to the [[18/17s equal temperament #Related temperament|Galilei tuning]], which is generated by the ratios 2/1 and 18/17. | |||
== Scale tree == | |||
Ed5/2 scales can be approximated in [[EDO]]s by subdividing their approximations of 5/2. | |||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
! colspan="4" |Major tenth | |||
! colspan=" | ! Period | ||
! | !Notes | ||
! | |- | ||
|9\7 | |||
| | |||
| | |||
| | |||
|96.429 | |||
|Superpental Dorian mode ends, Mohajira Dorian-Mixolydian mode begins | |||
|- | |- | ||
| | | | ||
| | |31\24 | ||
| | | | ||
| | |||
|96.875 | |||
| | | | ||
| | |||
| | |||
|- | |- | ||
| | |22\17 | ||
| | | | ||
| | | | ||
| | |||
|97.059 | |||
| | |Mohajira Dorian-Mixolydian mode ends, Beatles Dorian-Mixolydian mode begins | ||
| | |||
| | |||
|- | |- | ||
| | | | ||
| | |35\27 | ||
| | | | ||
| | | | ||
| | |97.{{Overline|2}} | ||
| | | | ||
| | |||
|- | |- | ||
| | | 13\10 | ||
| | | | ||
| | | | ||
| | | | ||
| | |97.5 | ||
| | |Beatles Dorian-Mixolydian mode ends, Subpental Mixolydian mode begins | ||
|- | |- | ||
| | |17\13 | ||
| | | | ||
| | | | ||
| | | | ||
| | |98.077 | ||
| | | | ||
|- | |- | ||
| | |21\16 | ||
| | | | ||
| | | | ||
| | | | ||
| | |98.4375 | ||
| | |Subpental Mixolydian mode ends, Pental Mixolydian mode begins | ||
|- | |- | ||
| | | | ||
| | |25\19 | ||
| | | | ||
| | | | ||
| | |98.684 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | | | ||
| | |29\22 | ||
| | | | ||
| | |98.8{{Overline|63}} | ||
| | |||
| | |||
| | |||
|- | |- | ||
| | | | ||
| | | | ||
| | | | ||
| | |33\25 | ||
| | |99 | ||
| | | | ||
|- | |- | ||
| | |4\3 | ||
| | | | ||
| | | | ||
| | | | ||
| | |100 | ||
| | |Pental Mixolydian mode ends, Soft Superpental Mixolydian mode begins | ||
|- | |- | ||
| | | | ||
| | | 19\14 | ||
| | | | ||
| | | | ||
| | |101.786 | ||
| | | | ||
|- | |- | ||
| | |15\11 | ||
| | | | ||
| | | | ||
| | | | ||
| | |102.{{Overline|27}} | ||
|Soft Superpental Mixolydian mode ends, Intense Superpental Mixolydian mode begins | |||
| | |||
| | |||
|- | |- | ||
| | | | ||
| | |26\19 | ||
| | | | ||
| | | | ||
| | |102.632 | ||
| | | | ||
|- | |- | ||
| | |11\8 | ||
| | |||
| | | | ||
| | | | ||
| | |103.125 | ||
|Intense Superpental Mixolydian mode ends, Mixolydian-Ionian mode begins | |||
| | |||
| | |||
|- | |- | ||
| | | | ||
| | |18\13 | ||
| | | | ||
| | |||
|103.846 | |||
| | | | ||
| | |||
| | |||
|- | |- | ||
| | | | ||
| | | | ||
| | |25\18 | ||
| | | | ||
| | |104.1{{Overline|6}} | ||
| | | | ||
| | |||
|} | |} | ||
== | == See also == | ||
* [[12edo|12EDO]] - relative EDO | |||
* [[28ed5|28ED5]] - relative ED5 | |||
* [[34ed7|34ED7]] - relative ED7 | |||
* [[40ed10|40ED10]] - relative ED10 | |||
* [[42ed11|42ED11]] - relative ED11 | |||
* [[18/17 equal-step tuning|AS18/17]] - relative [[AS|ambitonal sequence]] | |||
[[Category:Nonoctave]] | [[Category:Nonoctave]] |
Latest revision as of 18:40, 1 August 2025
← 15ed5/2 | 16ed5/2 | 17ed5/2 → |
(semiconvergent)
16ED5/2 is the equal division of the 5/2 interval into 16 parts of 99.1446 cents each. 16 equal divisions of the just major tenth is not a "real" xenharmonic tuning; it is a slightly compressed version of the normal 12-tone scale.
Intervals
Degrees | Enneatonic | Cents | ||
---|---|---|---|---|
1 | 1#/2b | F#/Gb | 99.145 | |
2 | 2 | G | 198.289 | |
3 | 2#/3b | G#/Jb | G#/Ab | 297.433 |
4 | 3 | J | A | 396.578 |
5 | 3#/4b | J#/Ab | A#/Bb | 495.723 |
6 | 4 | A | B | 594.868 |
7 | 5 | B | H | 694.012 |
8 | 5#/6b | B#/Hb | H#/Cb | 793.157 |
9 | 6 | H | C | 892.3015 |
10 | 6#/7b | H#/Cb | C#/Db | 991.446 |
11 | 7 | C | D | 1090.591 |
12 | 7#/8b | C#/Db | D#/Sb | 1189.735 |
13 | 8 | D | S | 1288.88 |
14 | 8#/9b | D#/Eb | S#/Eb | 1388.0245 |
15 | 9 | E | 1487.169 | |
16 | 1 | F | 1586.314 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -10.3 | -18.2 | -20.5 | -10.3 | -28.5 | +2.1 | -30.8 | -36.4 | -20.5 | +12.8 | -38.7 |
Relative (%) | -10.4 | -18.4 | -20.7 | -10.4 | -28.7 | +2.1 | -31.1 | -36.7 | -20.7 | +12.9 | -39.1 | |
Steps (reduced) |
12 (12) |
19 (3) |
24 (8) |
28 (12) |
31 (15) |
34 (2) |
36 (4) |
38 (6) |
40 (8) |
42 (10) |
43 (11) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +21.0 | -8.2 | -28.5 | -41.1 | -46.9 | -46.7 | -41.1 | -30.8 | -16.1 | +2.5 | +24.7 |
Relative (%) | +21.2 | -8.2 | -28.7 | -41.4 | -47.3 | -47.1 | -41.5 | -31.1 | -16.3 | +2.5 | +24.9 | |
Steps (reduced) |
45 (13) |
46 (14) |
47 (15) |
48 (0) |
49 (1) |
50 (2) |
51 (3) |
52 (4) |
53 (5) |
54 (6) |
55 (7) |
Regular temperaments
16ed5/2 can also be thought of as a generator of the 2.3.5.17.19 subgroup temperament which tempers out 256/255, 361/360, and 4624/4617, which is a cluster temperament with 12 clusters of notes in an octave (quintaleap temperament). This temperament is supported by 12-, 109-, 121-, 133-, 145-, and 157edo.
Tempering out 400/399 (equating 20/19 and 21/20) leads to quintupole (12&121), and tempering out 476/475 (equating 19/17 with 28/25) leads to quinticosiennic (12&145).
Another temperament related to 16ed5/2 is quintapole (12&85). It is practically identical to the Galilei tuning, which is generated by the ratios 2/1 and 18/17.
Scale tree
Ed5/2 scales can be approximated in EDOs by subdividing their approximations of 5/2.
Major tenth | Period | Notes | |||
---|---|---|---|---|---|
9\7 | 96.429 | Superpental Dorian mode ends, Mohajira Dorian-Mixolydian mode begins | |||
31\24 | 96.875 | ||||
22\17 | 97.059 | Mohajira Dorian-Mixolydian mode ends, Beatles Dorian-Mixolydian mode begins | |||
35\27 | 97.2 | ||||
13\10 | 97.5 | Beatles Dorian-Mixolydian mode ends, Subpental Mixolydian mode begins | |||
17\13 | 98.077 | ||||
21\16 | 98.4375 | Subpental Mixolydian mode ends, Pental Mixolydian mode begins | |||
25\19 | 98.684 | ||||
29\22 | 98.863 | ||||
33\25 | 99 | ||||
4\3 | 100 | Pental Mixolydian mode ends, Soft Superpental Mixolydian mode begins | |||
19\14 | 101.786 | ||||
15\11 | 102.27 | Soft Superpental Mixolydian mode ends, Intense Superpental Mixolydian mode begins | |||
26\19 | 102.632 | ||||
11\8 | 103.125 | Intense Superpental Mixolydian mode ends, Mixolydian-Ionian mode begins | |||
18\13 | 103.846 | ||||
25\18 | 104.16 |