17ed5/2
Jump to navigation
Jump to search
Prime factorization
17 (prime)
Step size
93.3126¢
Octave
13\17ed5/2 (1213.06¢)
(semiconvergent)
Twelfth
20\17ed5/2 (1866.25¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 16ed5/2 | 17ed5/2 | 18ed5/2 → |
(semiconvergent)
17ed5/2 is the equal division of the 5/2 interval into 17 parts of 93.3126 cents each, corresponding to 12.8600edo.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 93.313 | 17/16, 20/19, 22/21, 23/22 |
2 | 186.625 | 19/17 |
3 | 279.938 | 7/6, 19/16, 20/17 |
4 | 373.25 | 5/4, 16/13 |
5 | 466.563 | 13/10, 17/13 |
6 | 559.875 | |
7 | 653.188 | 19/13, 22/15 |
8 | 746.501 | 20/13, 23/15 |
9 | 839.813 | 13/8, 18/11 |
10 | 933.126 | 12/7, 17/10 |
11 | 1026.438 | |
12 | 1119.751 | 19/10, 21/11, 23/12 |
13 | 1213.063 | 2/1 |
14 | 1306.376 | 15/7, 17/8 |
15 | 1399.689 | |
16 | 1493.001 | 19/8 |
17 | 1586.314 | 5/2 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +13.1 | -35.7 | +26.1 | +13.1 | -22.6 | -9.6 | +39.2 | +21.9 | +26.1 | -45.6 | -9.6 |
Relative (%) | +14.0 | -38.3 | +28.0 | +14.0 | -24.3 | -10.3 | +42.0 | +23.5 | +28.0 | -48.8 | -10.3 | |
Steps (reduced) |
13 (13) |
20 (3) |
26 (9) |
30 (13) |
33 (16) |
36 (2) |
39 (5) |
41 (7) |
43 (9) |
44 (10) |
46 (12) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +38.5 | +3.5 | -22.6 | -41.1 | +40.6 | +35.0 | +34.7 | +39.2 | -45.3 | -32.5 | -16.1 |
Relative (%) | +41.2 | +3.7 | -24.3 | -44.0 | +43.5 | +37.5 | +37.2 | +42.0 | -48.5 | -34.8 | -17.3 | |
Steps (reduced) |
48 (14) |
49 (15) |
50 (16) |
51 (0) |
53 (2) |
54 (3) |
55 (4) |
56 (5) |
56 (5) |
57 (6) |
58 (7) |