16ed5/2

From Xenharmonic Wiki
Jump to: navigation, search

This is the scale which occurs as the dominant reformed Mixolydian mode tuned as an equal division of a just interval

Intervals

Degrees Enneatonic ed38\29 Golden ed5/2 ed(7φ+6)\5(φ+1) ed4\3=
1 1#/2b F#/Gb 98.276 98.3795 99.145 99.2705 100
2 2 G 196.552 196.759 198.289 198.541 200
3 2#/3b G#/Jb G#/Ab 294.828 295.138 297.433 297.8115 300
4 3 J A 393.103 393.518 396.578 397.082 400
5 3#/4b J#/Ab A#/Bb 491.379 491.897 495.723 496.3525 500
6 4 A B 589.655 590.277 594.868 595.623 600
7 5 B H 687.931 688.656 694.012 694.894 700
8 5#/6b B#/Hb H#/Cb 786.207 787.036 793.157 794.164 800
9 6 H C 884.483 885.415 892.3015 893.435 900
10 6#/7b H#/Cb C#/Db 982.759 983.795 991.446 992.705 1000
11 7 C D 1081.0345 1082.174 1090.591 1091.976 1100
12 7#/8b C#/Db D#/Sb 1179.31 1180.554 1189.735 1191.246 1200
13 8 D S 1277.586 1278.933 1288.88 1290.517 1300
14 8#/9b D#/Eb S#/Eb 1375.862 1377.313 1388.0245 1389.787 1400
15 9 E 1474.138 1475.692 1487.169 1489.058 1500
16 1 F 1572.414 1574.0715 1586.314 1588.328 1600

Coincidentally, 133 steps of the pyrite edX of this size exceed 11 octaves by only 2.978¢.