Gentle region (extended version): Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>xenwolf
**Imported revision 602895168 - Original comment: **
ArrowHead294 (talk | contribs)
mNo edit summary
 
(9 intermediate revisions by 6 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
''This is an extended version of the '''[[Gentle_region|Gentle region]] article.'''''
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
 
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2016-12-29 12:17:24 UTC</tt>.<br>
-----
: The original revision id was <tt>602895168</tt>.<br>
[[Margo_Schulter|Margo Schulter]], in a [https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_105200.html#105202 tuning list posting], defined the "gentle region" of temperaments with a fifth as generator as that of fifths about 1.49 to 2.65 cents sharp; later [https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_106239.html#106239 amending that] to from 1.49 to 3.04 cents sharp.
: The revision comment was: <tt></tt><br>
 
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Gentle-tempered tone systems are thus "mild" (or, as the name says, "gentle") versions of [[Superpyth]] temperament. They allow harmony in the style of medieval Pythagorean harmony, usable for "Neo-gothic" harmony systems; besides, they are possible temperament frameworks for [[Arabic, Turkish, Persian| middle-eastern (Arabic, Turkish, Persian)]] tuning systems, with the special property of delivering a common framework for both Arabic and Turkish music, differing in the degree of tempering. When the tempering of the fifth is "very gentle"/near-just, the interval notated as C-Fb in standard sheet notation (8 fifths down) will be close to a 5/4 major third, as used in Turkish music; while sharper tempering will give this interval the character of a neutral third, as important in Arabic music. (The interval notated as C-E will have the character of a larger Pythagorean—or super-Pythagorean—major third.)
<h4>Original Wikitext content:</h4>
 
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//This is an extended version of the **[[Gentle region]] article. **//
We can consider the first region to extend from fifths of size 17\29 to 64\109, and the extended region to reach 47\80. If we remove the restriction to tempering based on chains of fifths, we find that notable equal divisions in the smaller gentle region include multiples of {{EDOs| 29, 46, 75, 104, 109, 121, 145, 155, 162, 167, 179, 191, 201, 213, 225 and 237, plus 63 and 80 }} in the extended region.
----
 
[[@Margo Schulter]], in a [[@http://launch.groups.yahoo.com/group/tuning/message/38721|tuning list posting]], defined the "gentle region" of temperaments with a fifth as generator as that of fifths about 1.49 to 2.65 cents sharp; later [[@http://launch.groups.yahoo.com/group/tuning/message/105172|amending that]] to from 1.49 to 3.04 cents sharp. We can consider the first region to extend from fifths of size 17\29 to 64\109, and the extended region to reach 47\80. If we remove the restriction to tempering based on chains of fifths, we find that notable equal divisions in the smaller gentle region include multiples of [[@29edo]], [[@46edo]], [[@75edo]], [[@104edo]], [[@109edo]], [[@121edo]], [[@145edo|133edo]], [[@155edo]], [[@162edo]], [[@167edo]], [[@179edo]], [[@191edo]], [[@201edo]], [[@213edo]], [[@225edo]] and [[@237edo]], plus [[@63edo]] and [[@80edo]] in the extended region.
{| class="wikitable"
|-
! colspan="2" | Generator
! Cents
! 2-3-7(b)-11-13(b)
! <span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"><span style="background-color: rgba(255,255,255,0); display: block; text-align: center;">Half 8/7+ 1\3 7/6<span style="background-color: rgba(255,255,255,0); display: block; text-align: center;">1\3 8/7+ Half 7/6</span></span></span>
! 8/7+7/6
! Notes
|-
| (7+10)\29
|
| style="text-align: center;" | 289.655+413.793
| {{val| 29 46 81 100 107 }}
| style="text-align: center;" | 2\29+3\29
 
82.759+124.138
| style="text-align: center;" | 6\29+6\29
 
248.276+248.276
|
|-
| (25+36)\104
|
| style="text-align: center;" | 288.4615+415.385
| {{val| 104 165 292 360 385 }}
| style="text-align: center;" | 5\52+''23\312''
 
115.385+''88.4615''
 
<span style="background-color: rgba(255,255,255,0); text-align: start;">''5\78+23\208''</span>
 
<span style="background-color: rgba(255,255,255,0); text-align: start;">''76.923+132.692''</span>
| style="text-align: center;" | 5\52+23\104
 
230.769+265.385
|
|-
| (18+26)\75
|
| style="text-align: center;" | 288+416
| &lt; 75 119 210~211 259 277|
| style="text-align: center;" | 7\75+''17\225''
 
112+''90.667''
 
<span style="background-color: rgba(255,255,255,0); text-align: start;">''14\225+17\150''</span>
 
<span style="background-color: rgba(255,255,255,0); text-align: start;">''74.667+136''</span>
| style="text-align: center;" | 14\75+17\75
 
224+272
|
|-
|
| (47+68)\196
| style="text-align: center;" | 287.755+416.3265
| &lt; 196 311 549-551 678 725|
| style="text-align: center;" | ''37\392+44\588''
 
''113.265+89.796''
 
<span style="background-color: rgba(255,255,255,0); text-align: start;">''37/588''+11/98</span>
 
<span style="background-color: rgba(255,255,255,0); text-align: start;">''75.51''+134.694</span>
| style="text-align: center;" | 37/196+44/196
 
226.531+269.388
|
|-
|
|
| style="text-align: center;" | 287.713+416.382
| {{val| 29 46 81 100 107 }} + {{val| 46 73 129 159 170 }}</span><span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small; line-height: 1.5;">φ</span>
| style="text-align: center;" | 119.283+85.7795
 
<span style="background-color: rgba(255,255,255,0); display: block; text-align: center;">79.522+128.769</span>
| style="text-align: center;" | 238.566+257.3385
|
|-
|
| (29+42)\121
| style="text-align: center;" | 287.603+416.529
| {{val| 121 192 339~340 419 448 }}
| style="text-align: center;" | ''23\242''+9\121
 
''114.05''+89.256
 
<span style="background-color: rgba(255,255,255,0);">''23\363+27\242''</span>
 
<span style="background-color: rgba(255,255,255,0);">''76.033+133.884''</span>
| style="text-align: center;" | 23\121+27\121
 
228.099+267.769
|
|-
|
|
| style="text-align: center;" | 287.267+416.978
| {{val| 29 46 81 100 107 }} + {{val| 109 173 306 377 403 }}<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ</span>
| style="text-align: center;" | 116.8205+87.323
 
<span style="background-color: rgba(255,255,255,0); display: block; text-align: center;">78.617+130.984</span>
| style="text-align: center;" | 235.85+261.969
|
|-
| (11+16)\46
|
| style="text-align: center;" | 286.9565+417.391
| {{val| 46 73 129 159 170 }}
| style="text-align: center;" | ''9\92+5\69''
 
''117.391+86.9565''
 
<span style="background-color: rgba(255,255,255,0);">3\46+5\46</span>
 
<span style="background-color: rgba(255,255,255,0);">78.261+130.435</span>
| style="text-align: center;" | 9\46+5\23
 
234.783+260.87
|
|-
|
|
| style="text-align: center;" | 286.587+417.884
| {{val| 29 46 81 100 107 }} + {{val| 63 100 177 218 233 }}<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ</span>
| style="text-align: center;" | 117.925+88.626
 
<span style="background-color: rgba(255,255,255,0); display: block; text-align: center;">77.635+132.9395</span>
| style="text-align: center;" | 232.936+265.879
|
|-
|
| (48+70)\201
| style="text-align: center;" | 286.567+417.91
| {{val| 201 319 564 695 703 }}
| style="text-align: center;" | ''13\134+44\603''
 
''116.418+87.56''
 
<span style="background-color: rgba(255,255,255,0);">13\201+22\201</span>
 
<span style="background-color: rgba(255,255,255,0);">77.612+131.343</span>
| style="text-align: center;" | 39\201+44\201
 
232.836+262.687
|
|-
|
| (37+54)\155
| style="text-align: center;" | 286.452+418.0645
| {{val| 155 246 435 536 573 }}
| style="text-align: center;" | 3\31+''34\465''
 
116.129+''87.742''
 
<span style="background-color: rgba(255,255,255,0);">2\31+17\155</span>
 
<span style="background-color: rgba(255,255,255,0);">77.419+131.613</span>
| style="text-align: center;" | 30\155+34\155
 
232.258+263.226
|
|-
|
|
| style="text-align: center;" | 286.387+418.151
| {{val| 46 73 129 159 170 }} + {{val| 109 173 306 377 403 }}<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ</span>
| style="text-align: center;" | 115.968+87.842
 
<span style="background-color: rgba(255,255,255,0); display: block; text-align: center;">77.312+131.7365</span>
| style="text-align: center;" | 231.935+263.527
|
|-
|
| (63+92)\264
| style="text-align: center;" | 286.364+418.182
| {{val| 264 419 741 913 976 }}
| style="text-align: center;" | ''51\528+29\396''
 
''115.909+87.87''
 
<span style="background-color: rgba(255,255,255,0);">17\264+29\264</span>
 
<span style="background-color: rgba(255,255,255,0);">77.273+131.818</span>
| style="text-align: center;" | 51\264+58\264
 
231.818+263.636
|
|-
| (26+38)\109
|
| style="text-align: center;" | 286.2385+418.349
| {{val| 109 173 306 377 403 }}
| style="text-align: center;" | ''21\218''+8\109
 
''115.596''+88.07
 
<span style="background-color: rgba(255,255,255,0);">7\109+12\109</span>
 
<span style="background-color: rgba(255,255,255,0);">77.064+132.11</span>
| style="text-align: center;" | 21\109+24\109
 
231.192+264.22
| Boundary of smaller "gentle region"
|-
|
| (67+98)\281
| style="text-align: center;" | 286.121+418.505
| {{val| 281 446 789 972 1039 }}
| style="text-align: center;" | 27\281+''62\843''
 
115.3025+''88.256''
 
<span style="background-color: rgba(255,255,255,0);">18\281+31\281</span>
 
<span style="background-color: rgba(255,255,255,0);">76.868+132.384</span>
| style="text-align: center;" | 54\281+62\281
 
230.605+264.769
|
|-
|
|
| style="text-align: center;" | 286.101+418.533
| {{val| 46 73 129 159 170 }} + {{val| 63 100 177 218 233 }}<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ</span>
| style="text-align: center;" | 116.526+89.264
 
<span style="background-color: rgba(255,255,255,0); display: block; text-align: center;">77.684+133.8965</span>
| style="text-align: center;" | 233.052+267.793
|
|-
|
| (41+60)\172
| style="text-align: center;" | 286.0465+418.605
| {{val| 172 273 483 595 636 }}
| style="text-align: center;" | ''33\344+19\258''
 
''115.116+88.372''
 
<span style="background-color: rgba(255,255,255,0);">11\172+19\172</span>
 
<span style="background-color: rgba(255,255,255,0);">76.744+132.558</span>
| style="text-align: center;" | 33\172+38\172
 
230.232+265.116
|
|-
|
| (56+82)\235
| style="text-align: center;" | 285.957+418.723
| {{val| 235 373 660 813 869 }}
| style="text-align: center;" | ''9\94+52\705''


||||~ Geneator ||~ Cents ||~ 2-3-7(b)-11-13(b) ||||~ &lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;Half 8/7+ 1\3 7/6&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;1\3 8/7+ Half 7/6&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; ||~ 8/7+7/6 ||~  ||
|| (7+10)\29 ||  ||= 289.655+413.793 || &lt; 29 46 81 100 107| ||||= 2\29+&lt;span style="line-height: 1.5;"&gt;3\29&lt;/span&gt;
82.759+124.138 ||= 6\29+6\29
248.276+248.276 ||  ||
|| (25+36)\104 ||  ||= 288.4615+415.385 || &lt; 104 165 292 360 385| ||||= 10\104+23\312
115.385+88.4615
&lt;span style="background-color: rgba(255,255,255,0); text-align: start;"&gt;20\312+23\208&lt;/span&gt;
&lt;span style="background-color: rgba(255,255,255,0); text-align: start;"&gt;76.923+132.692&lt;/span&gt; ||= 20\104+23\104
230.769+265.385 ||  ||
|| (18+26)\75 ||  ||= 288+416 || &lt; 7&lt;span style="line-height: 1.5;"&gt;5 119 210~211 259 277|&lt;/span&gt; ||||= 7\75+17\225
112+90.667
&lt;span style="background-color: rgba(255,255,255,0); text-align: start;"&gt;14\225+17\150&lt;/span&gt;
&lt;span style="background-color: rgba(255,255,255,0); text-align: start;"&gt;74.667+136&lt;/span&gt; ||= 14\75+17\75
224+272 ||  ||
||  || (47+68)\196 ||= 287.755+416.3265 || &lt;&lt;span style="line-height: 1.5;"&gt; 196 311 549-551 678 725|&lt;/span&gt; ||||= 37\392+44\588
113.265+89.796
&lt;span style="background-color: rgba(255,255,255,0); text-align: start;"&gt;37/588+22/196&lt;/span&gt;
&lt;span style="background-color: rgba(255,255,255,0); text-align: start;"&gt;75.51+134.694&lt;/span&gt; ||= 37/196+44/196
226.531+269.388 ||  ||
||  ||  ||= 287.713+416.382 || &lt; 29 46 81 100 107|+&lt; &lt;span style="line-height: 1.5;"&gt;46 73 129 159 170|&lt;/span&gt;&lt;span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small; line-height: 1.5;"&gt;φ&lt;/span&gt; ||||= 119.283+85.7795
&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;79.522+128.769&lt;/span&gt; ||= 238.566+257.3385 ||  ||
||  || (29+42)\121 ||= 287.603+416.529 || &lt; 121 192 339~340 419 448| ||||= 23\242+9\121
114.05+89.256
&lt;span style="background-color: rgba(255,255,255,0);"&gt;23\363+27\242&lt;/span&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;76.033+133.884&lt;/span&gt; ||= 23\121+27\121
228.099+267.769 ||  ||
||  ||  ||= 287.267+416.978 || &lt; 29 46 81 100 107|+&lt; 109 173 306 377 403|&lt;span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;"&gt;φ&lt;/span&gt; ||||= 116.8205+87.323
&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;78.617+130.984&lt;/span&gt; ||= 235.85+261.969 ||  ||
|| (11+16)\46 ||  ||= 286.9565+417.391 || &lt; 46 73 129 159 170| ||||= 9\92+10\138
117.391+86.9565
&lt;span style="background-color: rgba(255,255,255,0);"&gt;3\46+5\46&lt;/span&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;78.261+130.435&lt;/span&gt; ||= 9\46+10\46
234.783+260.87 ||  ||
||  ||  ||= 286.587+417.884 || &lt; 29 46 81 100 107|+&lt;63 100 177 218 233|&lt;span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;"&gt;φ&lt;/span&gt; ||||= 117.925+88.626
&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;77.635+132.9395&lt;/span&gt; ||= 232.936+265.879 ||  ||
||  || (48+70)\201 ||= 286.567+417.91 || &lt; 201 319 564 695 703| ||||= 39\402+44\603
116.418+87.56
&lt;span style="background-color: rgba(255,255,255,0);"&gt;13\201+22\201&lt;/span&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;77.612+131.343&lt;/span&gt; ||= 39\201+44\201
232.836+262.687 ||  ||
||  || (37+54)\155 ||= 286.452+418.0645 || &lt; 155 246 435 536 573| ||||= 15\155+34\465
116.129+87.742
&lt;span style="background-color: rgba(255,255,255,0);"&gt;10\155+17\15&lt;/span&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;77.419+131.613&lt;/span&gt; ||= 30\155+34\155
232.258+263.226 ||  ||
||  ||  ||= 286.387+418.151 || &lt; 46 73 129 159 170|+&lt; 109 173 306 377 403|&lt;span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;"&gt;φ&lt;/span&gt; ||||= 115.968+87.842
&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;77.312+131.7365&lt;/span&gt; ||= 231.935+263.527 ||  ||
||  || (63+92)\264 ||= 286.364+418.182 || &lt; 264 419 741 913 976| ||||= 51\528+58\792
115.909+87.87
&lt;span style="background-color: rgba(255,255,255,0);"&gt;17\264+29\264&lt;/span&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;77.273+131.818&lt;/span&gt; ||= 51\264+58\264
231.818+263.636 ||  ||
|| (26+38)\109 ||  ||= 286.2385+418.349 || &lt; 109 173 306 377 403| ||||= 21\218+8\109
115.596+88.07
&lt;span style="background-color: rgba(255,255,255,0);"&gt;7\109+12\10&lt;/span&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;77.064+132.11&lt;/span&gt; ||= 21\109+24\109
231.192+264.22 || Boundary of smaller "gentle region" ||
||  || (67+98)\281 ||= 286.121+418.505 || &lt; 281 446 789 972 1039| ||||= 27\281+62\843
115.3025+88.256
&lt;span style="background-color: rgba(255,255,255,0);"&gt;18\281+31\28&lt;/span&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;76.868+132.384&lt;/span&gt; ||= 54\281+62\281
230.605+264.769 ||  ||
||  ||  ||= 286.101+418.533 || &lt; 46 73 129 159 170|+&lt; 63 100 177 218 233|&lt;span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;"&gt;φ&lt;/span&gt; ||||= 116.526+89.264
&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;77.684+133.8965&lt;/span&gt; ||= 233.052+267.793 ||  ||
||  || (41+60)\172 ||= 286.0465+418.605 || &lt; 172 273 483 595 636| ||||= 33\344+38\516
115.116+88.372
&lt;span style="background-color: rgba(255,255,255,0);"&gt;11\172+19\17&lt;/span&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;76.744+132.558&lt;/span&gt; ||= 33\172+38\172
230.232+265.116 ||  ||
||  || (56+82)\235 ||= 285.957+418.723 || &lt; 235 373 660 813 869| ||||= 45\470+52\705
114.894+81.511
114.894+81.511
&lt;span style="background-color: rgba(255,255,255,0);"&gt;15\235+26\23&lt;/span&gt;
 
&lt;span style="background-color: rgba(255,255,255,0);"&gt;76.596+132.766&lt;/span&gt; ||= 45\235+52\235
<span style="background-color: rgba(255,255,255,0);">3\47+26\235</span>
229.787+265.532 ||   ||
 
||   ||  ||= 285.852+418.864 || &lt; &lt;span style="line-height: 1.5;"&gt;109 173 306 377 403|+&lt;/span&gt;&lt; 63 100 177 218 233|&lt;span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;"&gt;φ&lt;/span&gt; ||||= 114.963+88.4675
<span style="background-color: rgba(255,255,255,0);">76.596+132.766</span>
&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;76.642+132.701&lt;/span&gt; ||= 229.926+265.402 ||   ||
| style="text-align: center;" | 9\47+52\235
|| &lt;span style="display: block; text-align: center;"&gt;(15+22)\63&lt;/span&gt; ||  ||= &lt;span style="display: block; text-align: center;"&gt;285.714+419.048&lt;/span&gt; || &lt; 63 100 177 218 233| ||||= 6\63+14\189
 
114.286+88.88
229.787+265.532
&lt;span style="background-color: rgba(255,255,255,0);"&gt;4\63+7\63&lt;/span&gt;
|  
&lt;span style="text-align: start;"&gt;&lt;span style="background-color: rgba(255,255,255,0);"&gt;76.1905+133.333&lt;/span&gt;&lt;/span&gt; ||= 12\63+14\63
|-
228.571+266.667 ||   ||
|  
||   ||  ||= 285.513+419.316 || &lt; 46 73 129 159 170|+&lt; 80 127 225 277 296|&lt;span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;"&gt;φ&lt;/span&gt; ||||= &lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;113.7825+89.20&lt;/span&gt;&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;&lt;span style="background-color: rgba(255,255,255,0);"&gt;75.855+133.80&lt;/span&gt;&lt;/span&gt;&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;
|  
&lt;/span&gt; ||= 227.565+267.606 ||   ||
| style="text-align: center;" | 285.852+418.864
||  || &lt;span style="display: block; text-align: center;"&gt;(49+72)\206&lt;/span&gt; ||= &lt;span style="display: block; text-align: center;"&gt;285.437+419.4175&lt;/span&gt; || &lt; 206 327 578~579 713 762| ||||= 20\206+15\206
| {{val| 109 173 306 377 403 }} + {{val| 63 100 177 218 233 }}<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ</span>
| style="text-align: center;" | 114.963+88.4675
 
<span style="background-color: rgba(255,255,255,0); display: block; text-align: center;">76.642+132.701</span>
| style="text-align: center;" | 229.926+265.402
|  
|-
| <span style="display: block; text-align: center;">(15+22)\63</span>
|  
| style="text-align: center;" | <span style="display: block; text-align: center;">285.714+419.048</span>
| {{val| 63 100 177 218 233 }}
| style="text-align: center;" | 2\21+''2\27''
 
114.286+''88.889''
 
<span style="background-color: rgba(255,255,255,0);">4\63+1\9</span>
 
<span style="background-color: rgba(255,255,255,0); text-align: start;">76.1905+133.333</span>
| style="text-align: center;" | 4\21+2\9
 
228.571+266.667
|  
|-
|  
|  
| style="text-align: center;" | 285.513+419.316
| {{val| 46 73 129 159 170 }} + {{val| 80 127 225 277 296 }}<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ</span>
| style="text-align: center;" | <span style="background-color: rgba(255,255,255,0); display: block; text-align: center;">113.7825+89.20</span><span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"><span style="background-color: rgba(255,255,255,0);">75.855+133.80</span></span><span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"></span>
| style="text-align: center;" | 227.565+267.606
|  
|-
|  
| <span style="display: block; text-align: center;">(49+72)\206</span>
| style="text-align: center;" | <span style="display: block; text-align: center;">285.437+419.4175</span>
| {{val| 206 327 578~579 713 762 }}
| style="text-align: center;" | 10\103+15\206
 
116.505+87.37
116.505+87.37
&lt;span style="background-color: rgba(255,255,255,0);"&gt;40\618+45\41&lt;/span&gt;
 
&lt;span style="background-color: rgba(255,255,255,0);"&gt;77.67+131.068&lt;/span&gt; ||= 40\206+45\206
<span style="background-color: rgba(255,255,255,0);">''20\309+45\412''</span>
233.01+262.136 ||   ||
 
|| &lt;span style="display: block; text-align: center;"&gt;(34+50)\143&lt;/span&gt; ||  ||= &lt;span style="display: block; text-align: center;"&gt;285.315+419.58&lt;/span&gt; || &lt; 143 227 401~402 495 529| ||||= 14\143+31\429
<span style="background-color: rgba(255,255,255,0);">''77.67+131.068''</span>
| style="text-align: center;" | 20\103+45\206
 
233.01+262.136
|  
|-
| <span style="display: block; text-align: center;">(34+50)\143</span>
|  
| style="text-align: center;" | <span style="display: block; text-align: center;">285.315+419.58</span>
| {{val| 143 227 401~402 495 529 }}
| style="text-align: center;" | ''14\143+31\429''
 
117.4825+86.71
117.4825+86.71
&lt;span style="background-color: rgba(255,255,255,0);"&gt;28\429+31\28&lt;/span&gt;
 
&lt;span style="background-color: rgba(255,255,255,0);"&gt;78.322+130.07&lt;/span&gt; ||= 28\143+31\143
<span style="background-color: rgba(255,255,255,0);">''28\429+31\286''</span>
234.965+260.14 ||   ||
 
||   ||  ||= 285.234+419.688 || &lt; 63 100 177 218 233|+&lt; 80 127 225 277 296|&lt;span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;"&gt;φ&lt;/span&gt; ||||= 113.085+89.636
<span style="background-color: rgba(255,255,255,0);">''78.322+130.07''</span>
&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;75.39+134.454&lt;/span&gt; ||= 226.169+268.909 ||   ||
| style="text-align: center;" | 28\143+31\143
|| &lt;span style="display: block; text-align: center;"&gt;(54+78)\223&lt;/span&gt; ||  ||= &lt;span style="display: block; text-align: center;"&gt;285.202+419.731&lt;/span&gt; || &lt; 223 354 626~627 771 825| ||||= 43\446+49\669
 
234.965+260.14
|  
|-
|  
|  
| style="text-align: center;" | 285.234+419.688
| {{val| 63 100 177 218 233 }} + {{val| 80 127 225 277 296 }}<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ</span>
| style="text-align: center;" | 113.085+89.636
 
<span style="background-color: rgba(255,255,255,0); display: block; text-align: center;">75.39+134.454</span>
| style="text-align: center;" | 226.169+268.909
|  
|-
| <span style="display: block; text-align: center;">(54+78)\223</span>
|  
| style="text-align: center;" |
<span style="display: block; text-align: center;">285.202+419.731</span>
| {{val| 223 354 626~627 771 825 }}
| style="text-align: center;" | ''43\446+49\669''
 
115.695+87.892
115.695+87.892
&lt;span style="background-color: rgba(255,255,255,0);"&gt;43\669+49\44&lt;/span&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;77.13+131.839&lt;/span&gt; ||= 43\223+49\223
231.39+263.677 ||  ||
|| &lt;span style="display: block; text-align: center;"&gt;(19+28)\80&lt;/span&gt; ||  ||= &lt;span style="display: block; text-align: center;"&gt;285+420&lt;/span&gt; || &lt; 80 127 225 277 296| ||||= 15\160+6\80
112.5+90
&lt;span style="background-color: rgba(255,255,255,0);"&gt;5\80+9\80&lt;/span&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;75+135&lt;/span&gt; ||= 15\80+18\80
225+270 || Boundary of larger "gentle region" ||</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Gentle region (extended version)&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;em&gt;This is an extended version of the &lt;strong&gt;&lt;a class="wiki_link" href="/Gentle%20region"&gt;Gentle region&lt;/a&gt; article. &lt;/strong&gt;&lt;/em&gt;&lt;br /&gt;
&lt;hr /&gt;
&lt;a class="wiki_link" href="/Margo%20Schulter" target="_blank"&gt;Margo Schulter&lt;/a&gt;, in a &lt;a class="wiki_link_ext" href="http://launch.groups.yahoo.com/group/tuning/message/38721" rel="nofollow" target="_blank"&gt;tuning list posting&lt;/a&gt;, defined the &amp;quot;gentle region&amp;quot; of temperaments with a fifth as generator as that of fifths about 1.49 to 2.65 cents sharp; later &lt;a class="wiki_link_ext" href="http://launch.groups.yahoo.com/group/tuning/message/105172" rel="nofollow" target="_blank"&gt;amending that&lt;/a&gt; to from 1.49 to 3.04 cents sharp. We can consider the first region to extend from fifths of size 17\29 to 64\109, and the extended region to reach 47\80. If we remove the restriction to tempering based on chains of fifths, we find that notable equal divisions in the smaller gentle region include multiples of &lt;a class="wiki_link" href="/29edo" target="_blank"&gt;29edo&lt;/a&gt;, &lt;a class="wiki_link" href="/46edo" target="_blank"&gt;46edo&lt;/a&gt;, &lt;a class="wiki_link" href="/75edo" target="_blank"&gt;75edo&lt;/a&gt;, &lt;a class="wiki_link" href="/104edo" target="_blank"&gt;104edo&lt;/a&gt;, &lt;a class="wiki_link" href="/109edo" target="_blank"&gt;109edo&lt;/a&gt;, &lt;a class="wiki_link" href="/121edo" target="_blank"&gt;121edo&lt;/a&gt;, &lt;a class="wiki_link" href="/145edo" target="_blank"&gt;133edo&lt;/a&gt;, &lt;a class="wiki_link" href="/155edo" target="_blank"&gt;155edo&lt;/a&gt;, &lt;a class="wiki_link" href="/162edo" target="_blank"&gt;162edo&lt;/a&gt;, &lt;a class="wiki_link" href="/167edo" target="_blank"&gt;167edo&lt;/a&gt;, &lt;a class="wiki_link" href="/179edo" target="_blank"&gt;179edo&lt;/a&gt;, &lt;a class="wiki_link" href="/191edo" target="_blank"&gt;191edo&lt;/a&gt;, &lt;a class="wiki_link" href="/201edo" target="_blank"&gt;201edo&lt;/a&gt;, &lt;a class="wiki_link" href="/213edo" target="_blank"&gt;213edo&lt;/a&gt;, &lt;a class="wiki_link" href="/225edo" target="_blank"&gt;225edo&lt;/a&gt; and &lt;a class="wiki_link" href="/237edo" target="_blank"&gt;237edo&lt;/a&gt;, plus &lt;a class="wiki_link" href="/63edo" target="_blank"&gt;63edo&lt;/a&gt; and &lt;a class="wiki_link" href="/80edo" target="_blank"&gt;80edo&lt;/a&gt; in the extended region.&lt;br /&gt;
&lt;br /&gt;


<span style="background-color: rgba(255,255,255,0);">''43\669+49\446''</span>
<span style="background-color: rgba(255,255,255,0);">''77.13+131.839''</span>
| style="text-align: center;" | 43\223+49\223
231.39+263.677
|
|-
| <span style="display: block; text-align: center;">(19+28)\80</span>
|
| style="text-align: center;" | <span style="display: block; text-align: center;">285+420</span>
| {{val| 80 127 225 277 296 }}
| style="text-align: center;" | ''3\32+3\40''
''112.5+90''
<span style="background-color: rgba(255,255,255,0);">1\16+9\80</span>
<span style="background-color: rgba(255,255,255,0);">75+135</span>
| style="text-align: center;" | 3\16+9\40
225+270
| Boundary of larger "gentle region"
|-
| style="text-align: center;" | (4+6)\17
|
| style="text-align: center;" | 282.353+423.529
|<nowiki>< 17 27 48 60 63|</nowiki>
| style="text-align: center;" | 1\17+''4\51''
70.588+''93.1765''
''3\34''+1\17


&lt;table class="wiki_table"&gt;
''105.882''+70.588
    &lt;tr&gt;
| style="text-align: center;" | 3\17+4\17
        &lt;th colspan="2"&gt;Geneator&lt;br /&gt;
211.765+282.353
&lt;/th&gt;
|
        &lt;th&gt;Cents&lt;br /&gt;
|}
&lt;/th&gt;
        &lt;th&gt;2-3-7(b)-11-13(b)&lt;br /&gt;
&lt;/th&gt;
        &lt;th colspan="2"&gt;&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;Half 8/7+ 1\3 7/6&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;1\3 8/7+ Half 7/6&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;8/7+7/6&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;(7+10)\29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;289.655+413.793&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 29 46 81 100 107|&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;2\29+&lt;span style="line-height: 1.5;"&gt;3\29&lt;/span&gt;&lt;br /&gt;
82.759+124.138&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;6\29+6\29&lt;br /&gt;
248.276+248.276&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;(25+36)\104&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;288.4615+415.385&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 104 165 292 360 385|&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;10\104+23\312&lt;br /&gt;
115.385+88.4615&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0); text-align: start;"&gt;20\312+23\208&lt;/span&gt;&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0); text-align: start;"&gt;76.923+132.692&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;20\104+23\104&lt;br /&gt;
230.769+265.385&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;(18+26)\75&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;288+416&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 7&lt;span style="line-height: 1.5;"&gt;5 119 210~211 259 277|&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;7\75+17\225&lt;br /&gt;
112+90.667&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0); text-align: start;"&gt;14\225+17\150&lt;/span&gt;&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0); text-align: start;"&gt;74.667+136&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;14\75+17\75&lt;br /&gt;
224+272&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(47+68)\196&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;287.755+416.3265&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt;&lt;span style="line-height: 1.5;"&gt; 196 311 549-551 678 725|&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;37\392+44\588&lt;br /&gt;
113.265+89.796&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0); text-align: start;"&gt;37/588+22/196&lt;/span&gt;&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0); text-align: start;"&gt;75.51+134.694&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;37/196+44/196&lt;br /&gt;
226.531+269.388&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;287.713+416.382&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 29 46 81 100 107|+&amp;lt; &lt;span style="line-height: 1.5;"&gt;46 73 129 159 170|&lt;/span&gt;&lt;span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small; line-height: 1.5;"&gt;φ&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;119.283+85.7795&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;79.522+128.769&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;238.566+257.3385&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(29+42)\121&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;287.603+416.529&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 121 192 339~340 419 448|&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;23\242+9\121&lt;br /&gt;
114.05+89.256&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;23\363+27\242&lt;/span&gt;&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;76.033+133.884&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;23\121+27\121&lt;br /&gt;
228.099+267.769&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;287.267+416.978&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 29 46 81 100 107|+&amp;lt; 109 173 306 377 403|&lt;span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;"&gt;φ&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;116.8205+87.323&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;78.617+130.984&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;235.85+261.969&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;(11+16)\46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;286.9565+417.391&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 46 73 129 159 170|&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;9\92+10\138&lt;br /&gt;
117.391+86.9565&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;3\46+5\46&lt;/span&gt;&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;78.261+130.435&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;9\46+10\46&lt;br /&gt;
234.783+260.87&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;286.587+417.884&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 29 46 81 100 107|+&amp;lt;63 100 177 218 233|&lt;span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;"&gt;φ&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;117.925+88.626&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;77.635+132.9395&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;232.936+265.879&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(48+70)\201&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;286.567+417.91&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 201 319 564 695 703|&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;39\402+44\603&lt;br /&gt;
116.418+87.56&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;13\201+22\201&lt;/span&gt;&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;77.612+131.343&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;39\201+44\201&lt;br /&gt;
232.836+262.687&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(37+54)\155&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;286.452+418.0645&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 155 246 435 536 573|&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;15\155+34\465&lt;br /&gt;
116.129+87.742&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;10\155+17\15&lt;/span&gt;&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;77.419+131.613&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;30\155+34\155&lt;br /&gt;
232.258+263.226&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;286.387+418.151&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 46 73 129 159 170|+&amp;lt; 109 173 306 377 403|&lt;span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;"&gt;φ&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;115.968+87.842&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;77.312+131.7365&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;231.935+263.527&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(63+92)\264&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;286.364+418.182&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 264 419 741 913 976|&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;51\528+58\792&lt;br /&gt;
115.909+87.87&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;17\264+29\264&lt;/span&gt;&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;77.273+131.818&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;51\264+58\264&lt;br /&gt;
231.818+263.636&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;(26+38)\109&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;286.2385+418.349&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 109 173 306 377 403|&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;21\218+8\109&lt;br /&gt;
115.596+88.07&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;7\109+12\10&lt;/span&gt;&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;77.064+132.11&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;21\109+24\109&lt;br /&gt;
231.192+264.22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Boundary of smaller &amp;quot;gentle region&amp;quot;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(67+98)\281&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;286.121+418.505&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 281 446 789 972 1039|&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;27\281+62\843&lt;br /&gt;
115.3025+88.256&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;18\281+31\28&lt;/span&gt;&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;76.868+132.384&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;54\281+62\281&lt;br /&gt;
230.605+264.769&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;286.101+418.533&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 46 73 129 159 170|+&amp;lt; 63 100 177 218 233|&lt;span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;"&gt;φ&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;116.526+89.264 &lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;77.684+133.8965&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;233.052+267.793&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(41+60)\172&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;286.0465+418.605&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 172 273 483 595 636|&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;33\344+38\516&lt;br /&gt;
115.116+88.372&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;11\172+19\17&lt;/span&gt;&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;76.744+132.558&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;33\172+38\172&lt;br /&gt;
230.232+265.116&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(56+82)\235&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;285.957+418.723&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 235 373 660 813 869|&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;45\470+52\705&lt;br /&gt;
114.894+81.511&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;15\235+26\23&lt;/span&gt;&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;76.596+132.766&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;45\235+52\235&lt;br /&gt;
229.787+265.532&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;285.852+418.864&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; &lt;span style="line-height: 1.5;"&gt;109 173 306 377 403|+&lt;/span&gt;&amp;lt; 63 100 177 218 233|&lt;span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;"&gt;φ&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;114.963+88.4675&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;76.642+132.701&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;229.926+265.402&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;span style="display: block; text-align: center;"&gt;(15+22)\63&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;285.714+419.048&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 63 100 177 218 233|&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;6\63+14\189&lt;br /&gt;
114.286+88.88&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;4\63+7\63&lt;/span&gt;&lt;br /&gt;
&lt;span style="text-align: start;"&gt;&lt;span style="background-color: rgba(255,255,255,0);"&gt;76.1905+133.333&lt;/span&gt;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;12\63+14\63&lt;br /&gt;
228.571+266.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;285.513+419.316&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 46 73 129 159 170|+&amp;lt; 80 127 225 277 296|&lt;span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;"&gt;φ&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;113.7825+89.20&lt;/span&gt;&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;&lt;span style="background-color: rgba(255,255,255,0);"&gt;75.855+133.80&lt;/span&gt;&lt;/span&gt;&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;&lt;br /&gt;
&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;227.565+267.606&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="display: block; text-align: center;"&gt;(49+72)\206&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;285.437+419.4175&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 206 327 578~579 713 762|&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;20\206+15\206&lt;br /&gt;
116.505+87.37&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;40\618+45\41&lt;/span&gt;&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;77.67+131.068&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;40\206+45\206&lt;br /&gt;
233.01+262.136&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;span style="display: block; text-align: center;"&gt;(34+50)\143&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;285.315+419.58&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 143 227 401~402 495 529|&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;14\143+31\429&lt;br /&gt;
117.4825+86.71&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;28\429+31\28&lt;/span&gt;&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;78.322+130.07&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;28\143+31\143&lt;br /&gt;
234.965+260.14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;285.234+419.688&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 63 100 177 218 233|+&amp;lt; 80 127 225 277 296|&lt;span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;"&gt;φ&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;113.085+89.636&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0); display: block; text-align: center;"&gt;75.39+134.454&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;226.169+268.909&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;span style="display: block; text-align: center;"&gt;(54+78)\223&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;285.202+419.731&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 223 354 626~627 771 825|&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;43\446+49\669&lt;br /&gt;
115.695+87.892&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;43\669+49\44&lt;/span&gt;&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;77.13+131.839&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;43\223+49\223&lt;br /&gt;
231.39+263.677&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;span style="display: block; text-align: center;"&gt;(19+28)\80&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;285+420&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&amp;lt; 80 127 225 277 296|&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2" style="text-align: center;"&gt;15\160+6\80&lt;br /&gt;
112.5+90&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;5\80+9\80&lt;/span&gt;&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;75+135&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;15\80+18\80&lt;br /&gt;
225+270&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Boundary of larger &amp;quot;gentle region&amp;quot;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;/body&gt;&lt;/html&gt;</pre></div>
[[Category:Gentle]]
[[Category:Interval region]]
[[Category:Tables]]

Latest revision as of 15:16, 16 January 2025

This is an extended version of the Gentle region article.


Margo Schulter, in a tuning list posting, defined the "gentle region" of temperaments with a fifth as generator as that of fifths about 1.49 to 2.65 cents sharp; later amending that to from 1.49 to 3.04 cents sharp.

Gentle-tempered tone systems are thus "mild" (or, as the name says, "gentle") versions of Superpyth temperament. They allow harmony in the style of medieval Pythagorean harmony, usable for "Neo-gothic" harmony systems; besides, they are possible temperament frameworks for middle-eastern (Arabic, Turkish, Persian) tuning systems, with the special property of delivering a common framework for both Arabic and Turkish music, differing in the degree of tempering. When the tempering of the fifth is "very gentle"/near-just, the interval notated as C-Fb in standard sheet notation (8 fifths down) will be close to a 5/4 major third, as used in Turkish music; while sharper tempering will give this interval the character of a neutral third, as important in Arabic music. (The interval notated as C-E will have the character of a larger Pythagorean—or super-Pythagorean—major third.)

We can consider the first region to extend from fifths of size 17\29 to 64\109, and the extended region to reach 47\80. If we remove the restriction to tempering based on chains of fifths, we find that notable equal divisions in the smaller gentle region include multiples of 29, 46, 75, 104, 109, 121, 145, 155, 162, 167, 179, 191, 201, 213, 225 and 237, plus 63 and 80 in the extended region.

Generator Cents 2-3-7(b)-11-13(b) Half 8/7+ 1\3 7/61\3 8/7+ Half 7/6 8/7+7/6 Notes
(7+10)\29 289.655+413.793 29 46 81 100 107] 2\29+3\29

82.759+124.138

6\29+6\29

248.276+248.276

(25+36)\104 288.4615+415.385 104 165 292 360 385] 5\52+23\312

115.385+88.4615

5\78+23\208

76.923+132.692

5\52+23\104

230.769+265.385

(18+26)\75 288+416 7\75+17\225

112+90.667

14\225+17\150

74.667+136

14\75+17\75

224+272

(47+68)\196 287.755+416.3265 37\392+44\588

113.265+89.796

37/588+11/98

75.51+134.694

37/196+44/196

226.531+269.388

287.713+416.382 29 46 81 100 107] + 46 73 129 159 170]φ 119.283+85.7795

79.522+128.769

238.566+257.3385
(29+42)\121 287.603+416.529 121 192 339~340 419 448] 23\242+9\121

114.05+89.256

23\363+27\242

76.033+133.884

23\121+27\121

228.099+267.769

287.267+416.978 29 46 81 100 107] + 109 173 306 377 403]φ 116.8205+87.323

78.617+130.984

235.85+261.969
(11+16)\46 286.9565+417.391 46 73 129 159 170] 9\92+5\69

117.391+86.9565

3\46+5\46

78.261+130.435

9\46+5\23

234.783+260.87

286.587+417.884 29 46 81 100 107] + 63 100 177 218 233]φ 117.925+88.626

77.635+132.9395

232.936+265.879
(48+70)\201 286.567+417.91 201 319 564 695 703] 13\134+44\603

116.418+87.56

13\201+22\201

77.612+131.343

39\201+44\201

232.836+262.687

(37+54)\155 286.452+418.0645 155 246 435 536 573] 3\31+34\465

116.129+87.742

2\31+17\155

77.419+131.613

30\155+34\155

232.258+263.226

286.387+418.151 46 73 129 159 170] + 109 173 306 377 403]φ 115.968+87.842

77.312+131.7365

231.935+263.527
(63+92)\264 286.364+418.182 264 419 741 913 976] 51\528+29\396

115.909+87.87

17\264+29\264

77.273+131.818

51\264+58\264

231.818+263.636

(26+38)\109 286.2385+418.349 109 173 306 377 403] 21\218+8\109

115.596+88.07

7\109+12\109

77.064+132.11

21\109+24\109

231.192+264.22

Boundary of smaller "gentle region"
(67+98)\281 286.121+418.505 281 446 789 972 1039] 27\281+62\843

115.3025+88.256

18\281+31\281

76.868+132.384

54\281+62\281

230.605+264.769

286.101+418.533 46 73 129 159 170] + 63 100 177 218 233]φ 116.526+89.264

77.684+133.8965

233.052+267.793
(41+60)\172 286.0465+418.605 172 273 483 595 636] 33\344+19\258

115.116+88.372

11\172+19\172

76.744+132.558

33\172+38\172

230.232+265.116

(56+82)\235 285.957+418.723 235 373 660 813 869] 9\94+52\705

114.894+81.511

3\47+26\235

76.596+132.766

9\47+52\235

229.787+265.532

285.852+418.864 109 173 306 377 403] + 63 100 177 218 233]φ 114.963+88.4675

76.642+132.701

229.926+265.402
(15+22)\63 285.714+419.048 63 100 177 218 233] 2\21+2\27

114.286+88.889

4\63+1\9

76.1905+133.333

4\21+2\9

228.571+266.667

285.513+419.316 46 73 129 159 170] + 80 127 225 277 296]φ 113.7825+89.2075.855+133.80 227.565+267.606
(49+72)\206 285.437+419.4175 206 327 578~579 713 762] 10\103+15\206

116.505+87.37

20\309+45\412

77.67+131.068

20\103+45\206

233.01+262.136

(34+50)\143 285.315+419.58 143 227 401~402 495 529] 14\143+31\429

117.4825+86.71

28\429+31\286

78.322+130.07

28\143+31\143

234.965+260.14

285.234+419.688 63 100 177 218 233] + 80 127 225 277 296]φ 113.085+89.636

75.39+134.454

226.169+268.909
(54+78)\223

285.202+419.731

223 354 626~627 771 825] 43\446+49\669

115.695+87.892

43\669+49\446

77.13+131.839

43\223+49\223

231.39+263.677

(19+28)\80 285+420 80 127 225 277 296] 3\32+3\40

112.5+90

1\16+9\80

75+135

3\16+9\40

225+270

Boundary of larger "gentle region"
(4+6)\17 282.353+423.529 < 17 27 48 60 63| 1\17+4\51

70.588+93.1765

3\34+1\17

105.882+70.588

3\17+4\17

211.765+282.353