61ed7: Difference between revisions
Jump to navigation
Jump to search
Created page with "'''Division of the 7th harmonic into 61 equal parts''' (61ed7) is related to the alphaquarter temperament, which tempers out 3025/3024, 400..." Tags: Mobile edit Mobile web edit |
m Removing from Category:Edonoi using Cat-a-lot |
||
(6 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
'''[[Ed7|Division of the 7th harmonic]] into 61 equal parts''' (61ed7) is related to the [[ | {{Infobox ET}} | ||
'''[[Ed7|Division of the 7th harmonic]] into 61 equal parts''' (61ed7) is related to the [[Escapade family#Alphaquarter|alphaquarter temperament]], which tempers out 3025/3024, 4000/3993, and 5120/5103 in the 11-limit; 325/324, 364/363, 1001/1000, and 4096/4095 in the 13-limit. The step size is about 55.2267 cents, corresponding to 21.7286 [[edo]]. | |||
{| class="wikitable" | == Intervals == | ||
{| class="wikitable mw-collapsible" | |||
|+ Intervals of 61ed7 | |||
|- | |- | ||
! | degree | ! | degree | ||
Line 35: | Line 38: | ||
| | 5 | | | 5 | ||
| | 276.1333 | | | 276.1333 | ||
| | | | | 88/75 | ||
| | | | | | ||
|- | |- | ||
| | 6 | | | 6 | ||
| | 331.3599 | | | 331.3599 | ||
| | | | | 40/33 | ||
| | | | | | ||
|- | |- | ||
Line 50: | Line 53: | ||
| | 8 | | | 8 | ||
| | 441.8132 | | | 441.8132 | ||
| | | | | (49/38) | ||
| | | | | | ||
|- | |- | ||
Line 65: | Line 68: | ||
| | 11 | | | 11 | ||
| | 607.4932 | | | 607.4932 | ||
| | 91/64, [[64/45]] | | | (91/64), [[64/45]] | ||
| | | | | | ||
|- | |- | ||
Line 75: | Line 78: | ||
| | 13 | | | 13 | ||
| | 717.9465 | | | 717.9465 | ||
| | | | | 50/33 | ||
| | | | | | ||
|- | |- | ||
Line 140: | Line 143: | ||
| | 26 | | | 26 | ||
| | 1435.8930 | | | 1435.8930 | ||
| | | | | 55/24 | ||
| | | | | | ||
|- | |- | ||
Line 155: | Line 158: | ||
| | 29 | | | 29 | ||
| | 1601.5730 | | | 1601.5730 | ||
| | | | | [[63/50|63/25]] | ||
| | | | | | ||
|- | |- | ||
Line 210: | Line 213: | ||
| | 40 | | | 40 | ||
| | 2209.0662 | | | 2209.0662 | ||
| | [[34/19|68/19]] | | | ([[34/19|68/19]]) | ||
| | | | | | ||
|- | |- | ||
| | 41 | | | 41 | ||
| | 2264.2928 | | | 2264.2928 | ||
| | | | 100/27 | ||
| | | | | | ||
|- | |- | ||
Line 230: | Line 233: | ||
| | 44 | | | 44 | ||
| | 2429.9728 | | | 2429.9728 | ||
| | 57/14, [[56/55|224/55]], | | | (57/14), [[56/55|224/55]], 110/27 | ||
| | | | | | ||
|- | |- | ||
Line 260: | Line 263: | ||
| | 50 | | | 50 | ||
| | 2761.3327 | | | 2761.3327 | ||
| | [[16/13|64/13]] | | | ([[16/13|64/13]]) | ||
| | | | | | ||
|- | |- | ||
Line 275: | Line 278: | ||
| | 53 | | | 53 | ||
| | 2927.0127 | | | 2927.0127 | ||
| | [[19/14|38/7]] | | | ([[19/14|38/7]]) | ||
| | | | | | ||
|- | |- | ||
Line 295: | Line 298: | ||
| | 57 | | | 57 | ||
| | 3147.9193 | | | 3147.9193 | ||
| | [[20/13|80/13]] | | | ([[20/13|80/13]]) | ||
| | | | | | ||
|- | |- | ||
Line 310: | Line 313: | ||
| | 60 | | | 60 | ||
| | 3313.5993 | | | 3313.5993 | ||
| | [[22/13|88/13]] | | | ([[22/13|88/13]]) | ||
| | | | | | ||
|- | |- | ||
Line 319: | Line 322: | ||
|} | |} | ||
[ | == Harmonics == | ||
[[ | {{Harmonics in equal|61|7|1}} | ||
{{Harmonics in equal|61|7|1|collapsed=1|start=12}} | |||
== Music == | |||
* [https://www.youtube.com/watch?v=FcF2wKqBiCs A Gift (a day late, i am ashamed)] by [[Nicolai Pulley]] | |||
{{todo|expand}} |
Latest revision as of 19:23, 1 August 2025
← 60ed7 | 61ed7 | 62ed7 → |
Division of the 7th harmonic into 61 equal parts (61ed7) is related to the alphaquarter temperament, which tempers out 3025/3024, 4000/3993, and 5120/5103 in the 11-limit; 325/324, 364/363, 1001/1000, and 4096/4095 in the 13-limit. The step size is about 55.2267 cents, corresponding to 21.7286 edo.
Intervals
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | 0.0000 | exact 1/1 | |
1 | 55.2267 | 33/32 | |
2 | 110.4533 | 16/15 | |
3 | 165.6800 | 11/10 | |
4 | 220.9066 | 25/22 | |
5 | 276.1333 | 88/75 | |
6 | 331.3599 | 40/33 | |
7 | 386.5866 | 5/4 | |
8 | 441.8132 | (49/38) | |
9 | 497.0399 | 4/3 | |
10 | 552.2665 | 11/8 | |
11 | 607.4932 | (91/64), 64/45 | |
12 | 662.7199 | 22/15 | |
13 | 717.9465 | 50/33 | |
14 | 773.1732 | 25/16 | |
15 | 828.3998 | ||
16 | 883.6265 | 5/3 | |
17 | 938.8531 | 55/32 | |
18 | 994.0798 | 16/9 | |
19 | 1049.3064 | 11/6 | |
20 | 1104.5331 | ||
21 | 1159.7597 | ||
22 | 1214.9864 | ||
23 | 1270.2130 | 25/12 | |
24 | 1325.4397 | ||
25 | 1380.6664 | 20/9 | |
26 | 1435.8930 | 55/24 | |
27 | 1491.1197 | ||
28 | 1546.3463 | ||
29 | 1601.5730 | 63/25 | |
30 | 1656.7996 | ||
31 | 1712.0263 | ||
32 | 1767.2529 | 25/9 | |
33 | 1822.4796 | ||
34 | 1877.7062 | ||
35 | 1932.9329 | ||
36 | 1988.1596 | ||
37 | 2043.3862 | 88/27 | |
38 | 2098.6129 | 84/25 | |
39 | 2153.8395 | ||
40 | 2209.0662 | (68/19) | |
41 | 2264.2928 | 100/27 | |
42 | 2319.5195 | 42/11 | |
43 | 2374.7461 | 63/16 | |
44 | 2429.9728 | (57/14), 224/55, 110/27 | |
45 | 2485.1994 | 21/5 | |
46 | 2540.4261 | (13/3) | |
47 | 2595.6527 | ||
48 | 2650.8794 | ||
49 | 2706.1061 | 105/22 | |
50 | 2761.3327 | (64/13) | |
51 | 2816.5594 | 56/11 | |
52 | 2871.7860 | 21/4 | |
53 | 2927.0127 | (38/7) | |
54 | 2982.2393 | 28/5 | |
55 | 3037.4660 | (52/9) | |
56 | 3092.6926 | ||
57 | 3147.9193 | (80/13) | |
58 | 3203.1459 | 70/11 | |
59 | 3258.3726 | 105/16 | |
60 | 3313.5993 | (88/13) | |
61 | 3368.8259 | exact 7/1 | harmonic seventh plus two octaves |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +15.0 | -24.2 | -25.3 | -25.0 | -9.3 | +0.0 | -10.3 | +6.7 | -10.0 | -9.3 | +5.7 |
Relative (%) | +27.1 | -43.9 | -45.7 | -45.2 | -16.8 | +0.0 | -18.6 | +12.2 | -18.1 | -16.9 | +10.4 | |
Steps (reduced) |
22 (22) |
34 (34) |
43 (43) |
50 (50) |
56 (56) |
61 (0) |
65 (4) |
69 (8) |
72 (11) |
75 (14) |
78 (17) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -22.4 | +15.0 | +6.0 | +4.7 | +10.2 | +21.7 | -16.7 | +5.0 | -24.2 | +5.7 | -16.1 |
Relative (%) | -40.6 | +27.1 | +10.9 | +8.5 | +18.5 | +39.3 | -30.2 | +9.0 | -43.9 | +10.3 | -29.1 | |
Steps (reduced) |
80 (19) |
83 (22) |
85 (24) |
87 (26) |
89 (28) |
91 (30) |
92 (31) |
94 (33) |
95 (34) |
97 (36) |
98 (37) |