14edf: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
ArrowHead294 (talk | contribs) |
||
(21 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
==Intervals== | 14edf is related to [[24edo]], but with the perfect fifth rather than the [[2/1|octave]] being just, which stretches the octave by about 3.35 cents. The [[patent val]] has a generally sharp tendency for harmonics up to 22, with the exception for [[7/1|7]], [[14/1|14]], and [[21/1|21]]. | ||
{| class="wikitable" | |||
| | === Harmonics === | ||
! | {{Harmonics in equal|14|3|2|intervals=integer|columns=11}} | ||
! | {{Harmonics in equal|14|3|2|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 14edf (continued)}} | ||
=== Subsets and supersets === | |||
Since 14 factors into primes as {{nowrap| 2 × 7 }}, 14edf contains subset edfs [[2edf]] and [[7edf]]. | |||
== Intervals == | |||
{{todo|inline=1|complete table|text=Add column with approximated JI ratios and/or notation.}} | |||
{| class="wikitable center-1 right-2" | |||
|- | |||
! # | |||
! Cents | |||
|- | |||
| 0 | |||
| 0.0 | |||
|- | |||
| 1 | |||
| 50.1 | |||
|- | |||
| 2 | |||
| 100.3 | |||
|- | |||
| 3 | |||
| 150.4 | |||
|- | |||
| 4 | |||
| 200.6 | |||
|- | |- | ||
| | | 5 | ||
| | | 250.7 | ||
|- | |- | ||
| | | 6 | ||
| | | 300.8 | ||
|- | |- | ||
| | | 7 | ||
| | | 351.0 | ||
|- | |- | ||
| | | 8 | ||
| | | 401.1 | ||
|- | |- | ||
| | | 9 | ||
| | | 451.3 | ||
|- | |- | ||
| | | 10 | ||
| | | 501.4 | ||
|- | |- | ||
| | | 11 | ||
| | | 551.5 | ||
|- | |- | ||
| | | 12 | ||
| | | 601.7 | ||
|- | |- | ||
| | | 13 | ||
| | | 651.8 | ||
|- | |- | ||
| | | 14 | ||
| | | 702.0 | ||
|- | |- | ||
| | | 15 | ||
| | | 752.1 | ||
|- | |- | ||
| | | 16 | ||
| | | 802.2 | ||
|- | |- | ||
| | | 17 | ||
| | | 852.4 | ||
|- | |- | ||
| | | 18 | ||
| | | 902.5 | ||
|- | |- | ||
| | | 19 | ||
| | | 952.7 | ||
|- | |- | ||
| | | 20 | ||
| | | 1002.8 | ||
|- | |- | ||
| | | 21 | ||
| | | 1052.9 | ||
|- | |- | ||
| | | 22 | ||
| | | 1103.1 | ||
|- | |- | ||
| | | 23 | ||
| | | 1153.2 | ||
|- | |- | ||
| | | 24 | ||
| | | 1203.4 | ||
|- | |- | ||
| | | 25 | ||
| | | 1253.5 | ||
|- | |- | ||
| | | 26 | ||
| | | 1303.6 | ||
|- | |- | ||
| | | 27 | ||
| | | 1353.8 | ||
|- | |- | ||
| | | 28 | ||
| | | 1403.9 | ||
|} | |} | ||
[[ | |||
[[ | == See also == | ||
[[Category: | * [[24edo]] – relative edo | ||
* [[38edt]] – relative edt | |||
* [[56ed5]] – relative ed5 | |||
* [[62ed6]] – relative ed6 | |||
* [[83ed11]] – relative ed11 | |||
* [[86ed12]] – relative ed12 | |||
* [[198ed304]] – close to the zeta-optimized tuning for 24edo | |||
[[Category:24edo]] |
Latest revision as of 19:18, 25 June 2025
← 13edf | 14edf | 15edf → |
14 equal divisions of the perfect fifth (abbreviated 14edf or 14ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 14 equal parts of about 50.1 ¢ each. Each step represents a frequency ratio of (3/2)1/14, or the 14th root of 3/2.
Theory
14edf is related to 24edo, but with the perfect fifth rather than the octave being just, which stretches the octave by about 3.35 cents. The patent val has a generally sharp tendency for harmonics up to 22, with the exception for 7, 14, and 21.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.4 | +3.4 | +6.7 | +21.5 | +6.7 | -9.5 | +10.1 | +6.7 | +24.9 | +10.3 | +10.1 |
Relative (%) | +6.7 | +6.7 | +13.4 | +42.9 | +13.4 | -18.9 | +20.1 | +13.4 | +49.6 | +20.5 | +20.1 | |
Steps (reduced) |
24 (10) |
38 (10) |
48 (6) |
56 (0) |
62 (6) |
67 (11) |
72 (2) |
76 (6) |
80 (10) |
83 (13) |
86 (2) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +21.9 | -6.1 | +24.9 | +13.4 | +8.7 | +10.1 | +16.7 | -21.9 | -6.1 | +13.6 | -13.2 | +13.4 |
Relative (%) | +43.7 | -12.2 | +49.6 | +26.7 | +17.4 | +20.1 | +33.4 | -43.7 | -12.2 | +27.2 | -26.3 | +26.7 | |
Steps (reduced) |
89 (5) |
91 (7) |
94 (10) |
96 (12) |
98 (0) |
100 (2) |
102 (4) |
103 (5) |
105 (7) |
107 (9) |
108 (10) |
110 (12) |
Subsets and supersets
Since 14 factors into primes as 2 × 7, 14edf contains subset edfs 2edf and 7edf.
Intervals
# | Cents |
---|---|
0 | 0.0 |
1 | 50.1 |
2 | 100.3 |
3 | 150.4 |
4 | 200.6 |
5 | 250.7 |
6 | 300.8 |
7 | 351.0 |
8 | 401.1 |
9 | 451.3 |
10 | 501.4 |
11 | 551.5 |
12 | 601.7 |
13 | 651.8 |
14 | 702.0 |
15 | 752.1 |
16 | 802.2 |
17 | 852.4 |
18 | 902.5 |
19 | 952.7 |
20 | 1002.8 |
21 | 1052.9 |
22 | 1103.1 |
23 | 1153.2 |
24 | 1203.4 |
25 | 1253.5 |
26 | 1303.6 |
27 | 1353.8 |
28 | 1403.9 |