16edf: Difference between revisions
Jump to navigation
Jump to search
CompactStar (talk | contribs) No edit summary |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(12 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} | |||
It | == Theory == | ||
16edf corresponds to 27.3522…[[edo]]. It is similar to every third step of [[82edo]] but not quite similar to [[27edo]]; the octave is compressed by 15.45{{c}}, a small but significant deviation. It contains good approximations of the [[7/1|7th]] and [[13/1|13th]] [[harmonic]]s. | |||
It serves as a good approximation to [[halftone]] temperament, containing the [[~]][[7/5]] generator at 13 steps. | |||
=== Harmonics === | |||
{{Harmonics in equal|16|3|2}} | |||
{{Harmonics in equal|16|3|2|start=12|columns=12|collapsed=true|title=Approximation of harmonics in 16edf (continued)}} | |||
=== Subsets and supersets === | |||
Since 16 factors into primes as 2<sup>4</sup>, 16edf contains subset edfs {{EDs|equave=f| 2, 4, and 8 }}. | |||
== Intervals == | == Intervals == | ||
{| class="wikitable center-1 right-2 mw-collapsible" | |||
{| class="wikitable right-2" | |+ Intervals of 16edf | ||
|- | |- | ||
! | ! # | ||
! | ! Cents | ||
! | ! Approximate ratios | ||
! | ! Halftone[6] notation<br>(using [[ups and downs notation|ups and downs]]) | ||
! Comments | |||
|- | |- | ||
| 0 | | 0 | ||
| 0. | | 0.0 | ||
| [[1/1]] | | [[1/1]] | ||
| C | |||
| | | | ||
|- | |- | ||
| 1 | | 1 | ||
| 43. | | 43.9 | ||
| 40/39, 39/38 | | 40/39, 39/38 | ||
| ^C | |||
| | | | ||
|- | |- | ||
| 2 | | 2 | ||
| 87. | | 87.7 | ||
| [[20/19]] | | [[20/19]] | ||
| Db | |||
| | | | ||
|- | |- | ||
| 3 | | 3 | ||
| 131. | | 131.6 | ||
| 55/51, ([[27/25]]) | | 55/51, ([[27/25]]) | ||
| vD | |||
| | | | ||
|- | |- | ||
| 4 | | 4 | ||
| 175. | | 175.5 | ||
| ([[21/19]]) | | ([[21/19]]) | ||
| D | |||
| | | | ||
|- | |- | ||
| 5 | | 5 | ||
| 219. | | 219.4 | ||
| | | | ||
| vE | |||
| | | | ||
|- | |- | ||
| 6 | | 6 | ||
| 263. | | 263.2 | ||
| ([[7/6]]) | | ([[7/6]]) | ||
| E | |||
| | | | ||
|- | |- | ||
| 7 | | 7 | ||
| 307. | | 307.1 | ||
| | | | ||
| Fb | |||
| | | | ||
|- | |- | ||
| 8 | | 8 | ||
| | | 351.0 | ||
| 60/49, 49/40 | | 60/49, 49/40 | ||
| vF | |||
| | | | ||
|- | |- | ||
| 9 | | 9 | ||
| 394. | | 394.8 | ||
| (44/35) | | (44/35) | ||
| F | |||
| | | | ||
|- | |- | ||
| 10 | | 10 | ||
| 438. | | 438.7 | ||
| ([[9/7]]) | | ([[9/7]]) | ||
| Ab | |||
| | | | ||
|- | |- | ||
| 11 | | 11 | ||
| 482. | | 482.6 | ||
| | | | ||
| vA | |||
| | | | ||
|- | |- | ||
| 12 | | 12 | ||
| 526. | | 526.5 | ||
| ([[19/14]]) | | ([[19/14]]) | ||
| A | |||
| | | | ||
|- | |- | ||
| 13 | | 13 | ||
| 570. | | 570.3 | ||
| ([[25/18]]), 153/110, 112/81 | | ([[25/18]]), 153/110, 112/81 | ||
| B | |||
| | | | ||
|- | |- | ||
| 14 | | 14 | ||
| 614. | | 614.2 | ||
| ([[10/7]]) | | ([[10/7]]) | ||
| Cb | |||
| | | | ||
|- | |- | ||
| 15 | | 15 | ||
| 658. | | 658.1 | ||
| [[19/13]] | | [[19/13]] | ||
| vC | |||
| | | | ||
|- | |- | ||
| 16 | | 16 | ||
| | | 702.0 | ||
| [[3/2]] | | [[3/2]] | ||
| | | C | ||
| Just perfect fifth | |||
|- | |- | ||
| 17 | | 17 | ||
| 745. | | 745.8 | ||
| [[20/13]] | | [[20/13]] | ||
| | |||
| | | | ||
|- | |- | ||
| 18 | | 18 | ||
| 789. | | 789.7 | ||
| [[30/19]] | | [[30/19]] | ||
| | |||
| | | | ||
|- | |- | ||
| 19 | | 19 | ||
| 833. | | 833.6 | ||
| 55/34 | | 55/34 | ||
| | |||
| | | | ||
|- | |- | ||
| 20 | | 20 | ||
| 877. | | 877.4 | ||
| | |||
| | | | ||
| | | | ||
|- | |- | ||
| 21 | | 21 | ||
| 921. | | 921.3 | ||
| | |||
| | | | ||
| | | | ||
|- | |- | ||
| 22 | | 22 | ||
| 965. | | 965.2 | ||
| [[7/4]] | | [[7/4]] | ||
| | |||
| | | | ||
|- | |- | ||
| 23 | | 23 | ||
| 1009. | | 1009.0 | ||
| | |||
| | | | ||
| | | | ||
|- | |- | ||
| 24 | | 24 | ||
| 1052. | | 1052.9 | ||
| 90/49, ([[11/6]]) | | 90/49, ([[11/6]]) | ||
| | |||
| | | | ||
|- | |- | ||
| 25 | | 25 | ||
| 1096. | | 1096.8 | ||
| (66/35) | | (66/35) | ||
| | |||
| | | | ||
|- | |- | ||
| 26 | | 26 | ||
| 1140. | | 1140.7 | ||
| | | | ||
| | |||
| | | | ||
|- | |- | ||
| 27 | | 27 | ||
| 1184. | | 1184.5 | ||
| | | | ||
| | |||
| | | | ||
|- | |- | ||
| 28 | | 28 | ||
| 1228. | | 1228.4 | ||
| 128/63 | | 128/63 | ||
| | | | ||
| | |||
|- | |- | ||
| 29 | | 29 | ||
| 1272. | | 1272.3 | ||
| 25/12 | | 25/12 | ||
| | |||
| | | | ||
|- | |- | ||
| 30 | | 30 | ||
| 1316. | | 1316.2 | ||
| 15/7 | | 15/7 | ||
| | |||
| | | | ||
|- | |- | ||
| 31 | | 31 | ||
| 1360. | | 1360.0 | ||
| 57/26 | | 57/26 | ||
| | |||
| | | | ||
|- | |- | ||
| 32 | | 32 | ||
| 1403. | | 1403.9 | ||
| [[9/4]] | | [[9/4]] | ||
| | | | ||
| Pythagorean major ninth | |||
|} | |} | ||
== | == Music == | ||
; [[Nae Ayy]] | |||
* [https://www.youtube.com/watch?v=8YegsoiO1Co ''Neptune''] (2021) | |||
; [[nationalsolipsism]] | |||
* [https://www.youtube.com/watch?v=-RUeO6hJLBY ''schizophrenic lullaby fugue''] (2011) | |||
== See also == | |||
== | * [[27edo]] – relative edo | ||
* [[43edt]] – relative edt | |||
* [[70ed6]] – relative ed6 | |||
* [[90ed10]] – relative ed10 | |||
* [[97ed12]] – relative ed12 | |||
{{Todo|expand}} | |||
[[Category: | [[Category:27edo]] | ||
Latest revision as of 19:09, 25 June 2025
← 15edf | 16edf | 17edf → |
16 equal divisions of the perfect fifth (abbreviated 16edf or 16ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 16 equal parts of about 43.9 ¢ each. Each step represents a frequency ratio of (3/2)1/16, or the 16th root of 3/2.
Theory
16edf corresponds to 27.3522…edo. It is similar to every third step of 82edo but not quite similar to 27edo; the octave is compressed by 15.45 ¢, a small but significant deviation. It contains good approximations of the 7th and 13th harmonics.
It serves as a good approximation to halftone temperament, containing the ~7/5 generator at 13 steps.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -15.5 | -15.5 | +13.0 | +21.5 | +13.0 | +9.3 | -2.5 | +13.0 | +6.1 | +16.5 | -2.5 |
Relative (%) | -35.2 | -35.2 | +29.6 | +49.0 | +29.6 | +21.3 | -5.7 | +29.6 | +13.8 | +37.7 | -5.7 | |
Steps (reduced) |
27 (11) |
43 (11) |
55 (7) |
64 (0) |
71 (7) |
77 (13) |
82 (2) |
87 (7) |
91 (11) |
95 (15) |
98 (2) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.4 | -6.1 | +6.1 | -17.9 | +8.7 | -2.5 | -8.3 | -9.4 | -6.1 | +1.1 | +11.9 | -17.9 |
Relative (%) | -21.5 | -13.9 | +13.8 | -40.9 | +19.9 | -5.7 | -19.0 | -21.4 | -13.9 | +2.5 | +27.1 | -40.9 | |
Steps (reduced) |
101 (5) |
104 (8) |
107 (11) |
109 (13) |
112 (0) |
114 (2) |
116 (4) |
118 (6) |
120 (8) |
122 (10) |
124 (12) |
125 (13) |
Subsets and supersets
Since 16 factors into primes as 24, 16edf contains subset edfs 2, 4, and 8.
Intervals
# | Cents | Approximate ratios | Halftone[6] notation (using ups and downs) |
Comments |
---|---|---|---|---|
0 | 0.0 | 1/1 | C | |
1 | 43.9 | 40/39, 39/38 | ^C | |
2 | 87.7 | 20/19 | Db | |
3 | 131.6 | 55/51, (27/25) | vD | |
4 | 175.5 | (21/19) | D | |
5 | 219.4 | vE | ||
6 | 263.2 | (7/6) | E | |
7 | 307.1 | Fb | ||
8 | 351.0 | 60/49, 49/40 | vF | |
9 | 394.8 | (44/35) | F | |
10 | 438.7 | (9/7) | Ab | |
11 | 482.6 | vA | ||
12 | 526.5 | (19/14) | A | |
13 | 570.3 | (25/18), 153/110, 112/81 | B | |
14 | 614.2 | (10/7) | Cb | |
15 | 658.1 | 19/13 | vC | |
16 | 702.0 | 3/2 | C | Just perfect fifth |
17 | 745.8 | 20/13 | ||
18 | 789.7 | 30/19 | ||
19 | 833.6 | 55/34 | ||
20 | 877.4 | |||
21 | 921.3 | |||
22 | 965.2 | 7/4 | ||
23 | 1009.0 | |||
24 | 1052.9 | 90/49, (11/6) | ||
25 | 1096.8 | (66/35) | ||
26 | 1140.7 | |||
27 | 1184.5 | |||
28 | 1228.4 | 128/63 | ||
29 | 1272.3 | 25/12 | ||
30 | 1316.2 | 15/7 | ||
31 | 1360.0 | 57/26 | ||
32 | 1403.9 | 9/4 | Pythagorean major ninth |
Music
- Neptune (2021)
- schizophrenic lullaby fugue (2011)