317edo: Difference between revisions
+music |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(5 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
317edo is only [[consistent]] to the [[5-odd-limit]] and [[harmonic]] [[3/1|3]] is about halfway its steps. To start with, it can be considered in the 2.9.5.7 [[subgroup]], in which it is strong, [[tempering out]] [[420175/419904]], [[703125/702464]], and [[33554432/33480783]]. | |||
===Odd harmonics=== | |||
Using the [[patent val]] nonetheless, the equal temperament tempers out 78732/78125 ([[sensipent comma]] in the 5-limit; [[16875/16807]], [[65625/65536]], 589824/588245, and 49009212/48828125 in the 7-limit. In the 11-limit, the 317e [[val]] tempers out [[540/539]], 1375/1372, and [[3025/3024]], whereas the patent val tempers out [[441/440]], [[4000/3993]], and 14700/14641. | |||
=== Odd harmonics === | |||
{{Harmonics in equal|317}} | {{Harmonics in equal|317}} | ||
===Subsets and supersets=== | |||
=== Subsets and supersets === | |||
317edo is the 66th [[prime edo]]. [[634edo]], which doubles it, gives a good correction to the harmonic 3. | 317edo is the 66th [[prime edo]]. [[634edo]], which doubles it, gives a good correction to the harmonic 3. | ||
==Regular temperament properties== | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |- | ||
|2.9 | ! rowspan="2" | [[Subgroup]] | ||
|{{monzo|1005 -317}} | ! rowspan="2" | [[Comma list]] | ||
|{{mapping|317 1005}} | ! rowspan="2" | [[Mapping]] | ||
| | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.9 | |||
| {{monzo| 1005 -317 }} | |||
| {{mapping| 317 1005 }} | |||
| −0.0799 | |||
| 0.0799 | | 0.0799 | ||
| 2.11 | | 2.11 | ||
|- | |- | ||
|2.9.5 | | 2.9.5 | ||
|{{monzo|-53 5 16}}, {{monzo|33 -17 9}} | | {{monzo| -53 5 16 }}, {{monzo| 33 -17 9 }} | ||
|{{mapping|317 1005 736}} | | {{mapping| 317 1005 736 }} | ||
| | | −0.0254 | ||
| 0.1009 | | 0.1009 | ||
| 2.67 | | 2.67 | ||
|- | |- | ||
|2.9.5.7 | | 2.9.5.7 | ||
|420175/419904, 703125/702464, 33554432/33480783 | | 420175/419904, 703125/702464, 33554432/33480783 | ||
|{{mapping|317 1005 736 890}} | | {{mapping| 317 1005 736 890 }} | ||
| | | −0.0422 | ||
| 0.0921 | | 0.0921 | ||
| 2.43 | | 2.43 | ||
|- | |- | ||
|2.9.5.7.11 | | 2.9.5.7.11 | ||
|6250/6237, 12005/11979, 46656/46585, 151263/151250 | | 6250/6237, 12005/11979, 46656/46585, 151263/151250 | ||
|{{mapping|317 1005 736 890 1097}} | | {{mapping| 317 1005 736 890 1097 }} | ||
| | | −0.1126 | ||
| 0.1631 | | 0.1631 | ||
| 4.31 | | 4.31 | ||
|- | |- | ||
|2.9.5.7.11.13 | | 2.9.5.7.11.13 | ||
|1575/1573, 4459/4455, 6250/6237, 67392/67375, 190125/189728 | | 1575/1573, 4459/4455, 6250/6237, 67392/67375, 190125/189728 | ||
|{{mapping|317 1005 736 890 1097 1173}} | | {{mapping| 317 1005 736 890 1097 1173 }} | ||
| | | −0.0871 | ||
| 0.1594 | | 0.1594 | ||
| 4.21 | | 4.21 | ||
|- | |- | ||
|2.9.5.7.11.13.17 | | 2.9.5.7.11.13.17 | ||
|936/935, 1225/1224, 1575/1573, 12376/12375, 17920/17901, 34000/33957 | | 936/935, 1225/1224, 1575/1573, 12376/12375, 17920/17901, 34000/33957 | ||
|{{mapping|317 1005 736 890 1097 1173 1296}} | | {{mapping| 317 1005 736 890 1097 1173 1296 }} | ||
| | | −0.1109 | ||
| 0.1587 | | 0.1587 | ||
| 4.19 | | 4.19 | ||
Line 63: | Line 70: | ||
== Music == | == Music == | ||
; [[Francium]] | ; [[Francium]] | ||
* "Narrator Of Myths" from ''Mysteries'' (2023) [https://open.spotify.com/track/6AYSSw1kVKDDzWVYMyxafv Spotify] | [https://francium223.bandcamp.com/track/narrator-of-myths Bandcamp] | [https://www.youtube.com/watch?v=fNmEjgVonHk YouTube] | * "Narrator Of Myths" from ''Mysteries'' (2023) – [https://open.spotify.com/track/6AYSSw1kVKDDzWVYMyxafv Spotify] | [https://francium223.bandcamp.com/track/narrator-of-myths Bandcamp] | [https://www.youtube.com/watch?v=fNmEjgVonHk YouTube] | ||
* "Strange Shade Of Red" from ''You Are A...'' (2024) – [https://open.spotify.com/track/23kTYEBoGRKNLhVSaIxBpC Spotify] | [https://francium223.bandcamp.com/track/strange-shade-of-red Bandcamp] | [https://www.youtube.com/watch?v=G6h1qN__F6I YouTube] | |||
[[Category:Listen]] |
Latest revision as of 12:37, 21 February 2025
← 316edo | 317edo | 318edo → |
317 equal divisions of the octave (abbreviated 317edo or 317ed2), also called 317-tone equal temperament (317tet) or 317 equal temperament (317et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 317 equal parts of about 3.79 ¢ each. Each step represents a frequency ratio of 21/317, or the 317th root of 2.
Theory
317edo is only consistent to the 5-odd-limit and harmonic 3 is about halfway its steps. To start with, it can be considered in the 2.9.5.7 subgroup, in which it is strong, tempering out 420175/419904, 703125/702464, and 33554432/33480783.
Using the patent val nonetheless, the equal temperament tempers out 78732/78125 (sensipent comma in the 5-limit; 16875/16807, 65625/65536, 589824/588245, and 49009212/48828125 in the 7-limit. In the 11-limit, the 317e val tempers out 540/539, 1375/1372, and 3025/3024, whereas the patent val tempers out 441/440, 4000/3993, and 14700/14641.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.64 | -0.19 | +0.26 | +0.51 | +1.36 | -0.15 | -1.83 | +1.04 | +1.54 | -1.38 | +0.12 |
Relative (%) | -43.3 | -5.1 | +6.8 | +13.4 | +36.0 | -3.9 | -48.4 | +27.4 | +40.7 | -36.5 | +3.1 | |
Steps (reduced) |
502 (185) |
736 (102) |
890 (256) |
1005 (54) |
1097 (146) |
1173 (222) |
1238 (287) |
1296 (28) |
1347 (79) |
1392 (124) |
1434 (166) |
Subsets and supersets
317edo is the 66th prime edo. 634edo, which doubles it, gives a good correction to the harmonic 3.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.9 | [1005 -317⟩ | [⟨317 1005]] | −0.0799 | 0.0799 | 2.11 |
2.9.5 | [-53 5 16⟩, [33 -17 9⟩ | [⟨317 1005 736]] | −0.0254 | 0.1009 | 2.67 |
2.9.5.7 | 420175/419904, 703125/702464, 33554432/33480783 | [⟨317 1005 736 890]] | −0.0422 | 0.0921 | 2.43 |
2.9.5.7.11 | 6250/6237, 12005/11979, 46656/46585, 151263/151250 | [⟨317 1005 736 890 1097]] | −0.1126 | 0.1631 | 4.31 |
2.9.5.7.11.13 | 1575/1573, 4459/4455, 6250/6237, 67392/67375, 190125/189728 | [⟨317 1005 736 890 1097 1173]] | −0.0871 | 0.1594 | 4.21 |
2.9.5.7.11.13.17 | 936/935, 1225/1224, 1575/1573, 12376/12375, 17920/17901, 34000/33957 | [⟨317 1005 736 890 1097 1173 1296]] | −0.1109 | 0.1587 | 4.19 |