395edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Review
Francium (talk | contribs)
m changed EDO intro to ED intro
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|395}}
{{ED intro}}


== Theory ==
== Theory ==
Line 9: Line 9:


=== Subsets and supersets ===
=== Subsets and supersets ===
Since 395 factors into 5 × 79, 395edo has [[5edo]] and [[79edo]] as its subset edos.
Since 395 factors into {{factorisation|395}}, 395edo has [[5edo]] and [[79edo]] as its subset edos.


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning Error
! colspan="2" | Tuning error
|-
|-
! [[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
! [[TE simple badness|Relative]] (%)
Line 25: Line 26:
| {{monzo| -626 395 }}
| {{monzo| -626 395 }}
| {{mapping| 395 626 }}
| {{mapping| 395 626 }}
| 0.0577
| +0.0577
| 0.0577
| 0.0577
| 1.90
| 1.90
Line 32: Line 33:
| 32805/32768, {{monzo| -34 -43 44 }}
| 32805/32768, {{monzo| -34 -43 44 }}
| {{mapping| 395 626 917 }}
| {{mapping| 395 626 917 }}
| 0.1089
| +0.1089
| 0.0864
| 0.0864
| 2.84
| 2.84
Line 39: Line 40:
| 4375/4374, 32805/32768, 40500000/40353607
| 4375/4374, 32805/32768, 40500000/40353607
| {{mapping| 395 626 917 1109 }}
| {{mapping| 395 626 917 1109 }}
| 0.0560
| +0.0560
| 0.1183
| 0.1183
| 3.89
| 3.89
Line 46: Line 47:
| 1375/1372, 4375/4374, 32805/32768, 35937/35840
| 1375/1372, 4375/4374, 32805/32768, 35937/35840
| {{mapping| 395 626 917 1109 1366 }}
| {{mapping| 395 626 917 1109 1366 }}
| 0.1283
| +0.1283
| 0.1792
| 0.1792
| 5.90
| 5.90
Line 53: Line 54:
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per 8ve
|-
! Periods<br />per 8ve
! Generator*
! Generator*
! Cents*
! Cents*
! Associated<br>Ratio*
! Associated<br />ratio*
! Temperaments
! Temperaments
|-
|-
Line 66: Line 68:
| [[Pontiac]]
| [[Pontiac]]
|}
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct

Latest revision as of 06:18, 21 February 2025

← 394edo 395edo 396edo →
Prime factorization 5 × 79
Step size 3.03797 ¢ 
Fifth 231\395 (701.772 ¢)
Semitones (A1:m2) 37:30 (112.4 ¢ : 91.14 ¢)
Consistency limit 9
Distinct consistency limit 9

395 equal divisions of the octave (abbreviated 395edo or 395ed2), also called 395-tone equal temperament (395tet) or 395 equal temperament (395et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 395 equal parts of about 3.04 ¢ each. Each step represents a frequency ratio of 21/395, or the 395th root of 2.

Theory

395edo is consistent to the 9-odd-limit. The equal temperament tempers out 32805/32768 in the 5-limit; 4375/4374, 65625/65536, 14348907/14336000, and 40500000/40353607 in the 7-limit; supporting gold and pontiac.

Prime harmonics

Approximation of prime harmonics in 395edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.18 -0.49 +0.29 -1.44 +0.99 +1.37 +0.21 +0.59 +0.30 +0.28
Relative (%) +0.0 -6.0 -16.2 +9.5 -47.5 +32.6 +45.2 +6.9 +19.3 +9.8 +9.2
Steps
(reduced)
395
(0)
626
(231)
917
(127)
1109
(319)
1366
(181)
1462
(277)
1615
(35)
1678
(98)
1787
(207)
1919
(339)
1957
(377)

Subsets and supersets

Since 395 factors into 5 × 79, 395edo has 5edo and 79edo as its subset edos.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-626 395 [395 626]] +0.0577 0.0577 1.90
2.3.5 32805/32768, [-34 -43 44 [395 626 917]] +0.1089 0.0864 2.84
2.3.5.7 4375/4374, 32805/32768, 40500000/40353607 [395 626 917 1109]] +0.0560 0.1183 3.89
2.3.5.7.11 1375/1372, 4375/4374, 32805/32768, 35937/35840 [395 626 917 1109 1366]] +0.1283 0.1792 5.90

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 164\395 498.23 4/3 Pontiac

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct