422edo: Difference between revisions
m Sort key |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(11 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET | {{Infobox ET}} | ||
{{ED intro}} | |||
}} | |||
== Theory == | == Theory == | ||
422edo is a [[ | 422edo is a [[zeta peak edo]], though not zeta integral nor zeta gap. It is [[consistency|distinctly consistent]] through the [[27-odd-limit]], with [[harmonic]]s of 3 through 23 all tuned sharp. As an equal temperament, it [[tempering out|tempers out]] the [[vishnuzma]], {{monzo| 23 6 -14 }} and the countritonic comma, {{monzo| 33 -34 9 }}, in the 5-limit; [[4375/4374]] and [[589824/588245]] in the 7-limit; [[3025/3024]], [[5632/5625]], and [[9801/9800]] in the 11-limit; [[1716/1715]], [[2080/2079]], and [[2200/2197]] in the 13-limit; [[1156/1155]], [[1275/1274]], and [[2431/2430]] in the 17-limit; [[1216/1215]], [[1331/1330]], [[1445/1444]], and [[2432/2431]] in the 19-limit; and [[736/735]], [[1496/1495]], and [[1863/1862]] in the 23-limit. It [[support]]s provides the [[optimal patent val]]s for [[gamera]] in the 7-limit and [[hemigamera]] in the 13-limit. Other notable temperaments it supports are [[vishnu]], [[semisupermajor]], and [[countritonic]]. | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|422 | {{Harmonics in equal|422}} | ||
=== Subsets and supersets === | |||
Since 422 factors into 2 × 211, 422edo has subset edos [[2edo]] and [[211edo]]. | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | |- | ||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve stretch (¢) | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning error | ! colspan="2" | Tuning error | ||
|- | |- | ||
Line 27: | Line 25: | ||
| 2.3 | | 2.3 | ||
| {{monzo| 669 -422 }} | | {{monzo| 669 -422 }} | ||
| | | {{mapping| 422 669 }} | ||
| | | −0.1308 | ||
| 0.1308 | | 0.1308 | ||
| 4.60 | | 4.60 | ||
Line 34: | Line 32: | ||
| 2.3.5 | | 2.3.5 | ||
| {{monzo| 23 6 -14 }}, {{monzo| 33 -34 9 }} | | {{monzo| 23 6 -14 }}, {{monzo| 33 -34 9 }} | ||
| | | {{mapping| 422 669 980 }} | ||
| | | −0.1469 | ||
| 0.1092 | | 0.1092 | ||
| 3.84 | | 3.84 | ||
Line 41: | Line 39: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 4375/4374, 589824/588245, 29360128/29296875 | | 4375/4374, 589824/588245, 29360128/29296875 | ||
| | | {{mapping| 422 669 980 1185 }} | ||
| | | −0.1852 | ||
| 0.1155 | | 0.1155 | ||
| 4.06 | | 4.06 | ||
Line 48: | Line 46: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 3025/3024, 4375/4374, 5632/5625, 589824/588245 | | 3025/3024, 4375/4374, 5632/5625, 589824/588245 | ||
| | | {{mapping| 422 669 980 1185 1460 }} | ||
| | | −0.1679 | ||
| 0.1090 | | 0.1090 | ||
| 3.83 | | 3.83 | ||
Line 55: | Line 53: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 1716/1715, 2080/2079, 2200/2197, 3025/3024, 5632/5625 | | 1716/1715, 2080/2079, 2200/2197, 3025/3024, 5632/5625 | ||
| | | {{mapping| 422 669 980 1185 1460 1562 }} | ||
| | | −0.1930 | ||
| 0.1142 | | 0.1142 | ||
| 4.02 | | 4.02 | ||
Line 62: | Line 60: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 1156/1155, 1275/1274, 1716/1715, 2080/2079, 2200/2197, 2431/2430 | | 1156/1155, 1275/1274, 1716/1715, 2080/2079, 2200/2197, 2431/2430 | ||
| | | {{mapping| 422 669 980 1185 1460 1562 1725 }} | ||
| | | −0.1744 | ||
| 0.1151 | | 0.1151 | ||
| 4.05 | | 4.05 | ||
Line 69: | Line 67: | ||
| 2.3.5.7.11.13.17.19 | | 2.3.5.7.11.13.17.19 | ||
| 1156/1155, 1216/1215, 1275/1274, 1331/1330, 1445/1444, 1716/1715, 2200/2197 | | 1156/1155, 1216/1215, 1275/1274, 1331/1330, 1445/1444, 1716/1715, 2200/2197 | ||
| | | {{mapping| 422 669 980 1185 1460 1562 1725 1793 }} | ||
| | | −0.1839 | ||
| 0.1106 | | 0.1106 | ||
| 3.89 | | 3.89 | ||
|- | |||
| 2.3.5.7.11.13.17.19.23 | |||
| 736/735, 1156/1155, 1216/1215, 1275/1274, 1331/1330, 1445/1444, 1496/1495, 1716/1715 | |||
| {{mapping| 422 669 980 1185 1460 1562 1725 1793 1909 }} | |||
| −0.1675 | |||
| 0.1142 | |||
| 4.02 | |||
|} | |} | ||
* 422et has lower absolute errors than any previous equal temperaments in the 17-, 19-, and 23-limit. In the 17- and 19-limit it beats [[400edo|400]] and is bettered by [[460edo|460]]. In the 23-limit it beats [[373edo|373g]] and is bettered by [[525edo|525]]. | |||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per | |- | ||
! Generator | ! Periods<br />per 8ve | ||
! Cents | ! Generator* | ||
! Associated<br>ratio | ! Cents* | ||
! Associated<br />ratio* | |||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 101: | Line 108: | ||
| 9/7 | | 9/7 | ||
| [[Supermajor]] | | [[Supermajor]] | ||
|- | |||
| 1 | |||
| 207\422 | |||
| 588.63 | |||
| 128/91 | |||
| [[Countritonic]] | |||
|- | |- | ||
| 2 | | 2 | ||
Line 115: | Line 128: | ||
|- | |- | ||
| 2 | | 2 | ||
| 153\422<br>(58\422) | | 153\422<br />(58\422) | ||
| 435.07<br>(164.93) | | 435.07<br />(164.93) | ||
| 9/7<br>(11/10) | | 9/7<br />(11/10) | ||
| [[Semisupermajor]] | | [[Semisupermajor]] | ||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
[[Category: | [[Category:Countritonic]] | ||
[[Category:Gamera]] | [[Category:Gamera]] | ||
[[Category:Vishnu]] | [[Category:Vishnu]] |
Latest revision as of 14:55, 20 February 2025
← 421edo | 422edo | 423edo → |
422 equal divisions of the octave (abbreviated 422edo or 422ed2), also called 422-tone equal temperament (422tet) or 422 equal temperament (422et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 422 equal parts of about 2.84 ¢ each. Each step represents a frequency ratio of 21/422, or the 422nd root of 2.
Theory
422edo is a zeta peak edo, though not zeta integral nor zeta gap. It is distinctly consistent through the 27-odd-limit, with harmonics of 3 through 23 all tuned sharp. As an equal temperament, it tempers out the vishnuzma, [23 6 -14⟩ and the countritonic comma, [33 -34 9⟩, in the 5-limit; 4375/4374 and 589824/588245 in the 7-limit; 3025/3024, 5632/5625, and 9801/9800 in the 11-limit; 1716/1715, 2080/2079, and 2200/2197 in the 13-limit; 1156/1155, 1275/1274, and 2431/2430 in the 17-limit; 1216/1215, 1331/1330, 1445/1444, and 2432/2431 in the 19-limit; and 736/735, 1496/1495, and 1863/1862 in the 23-limit. It supports provides the optimal patent vals for gamera in the 7-limit and hemigamera in the 13-limit. Other notable temperaments it supports are vishnu, semisupermajor, and countritonic.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.41 | +0.42 | +0.84 | +0.34 | +1.18 | +0.26 | +1.07 | +0.16 | -0.19 | +0.94 |
Relative (%) | +0.0 | +14.6 | +14.6 | +29.6 | +12.0 | +41.4 | +9.1 | +37.5 | +5.7 | -6.8 | +32.9 | |
Steps (reduced) |
422 (0) |
669 (247) |
980 (136) |
1185 (341) |
1460 (194) |
1562 (296) |
1725 (37) |
1793 (105) |
1909 (221) |
2050 (362) |
2091 (403) |
Subsets and supersets
Since 422 factors into 2 × 211, 422edo has subset edos 2edo and 211edo.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [669 -422⟩ | [⟨422 669]] | −0.1308 | 0.1308 | 4.60 |
2.3.5 | [23 6 -14⟩, [33 -34 9⟩ | [⟨422 669 980]] | −0.1469 | 0.1092 | 3.84 |
2.3.5.7 | 4375/4374, 589824/588245, 29360128/29296875 | [⟨422 669 980 1185]] | −0.1852 | 0.1155 | 4.06 |
2.3.5.7.11 | 3025/3024, 4375/4374, 5632/5625, 589824/588245 | [⟨422 669 980 1185 1460]] | −0.1679 | 0.1090 | 3.83 |
2.3.5.7.11.13 | 1716/1715, 2080/2079, 2200/2197, 3025/3024, 5632/5625 | [⟨422 669 980 1185 1460 1562]] | −0.1930 | 0.1142 | 4.02 |
2.3.5.7.11.13.17 | 1156/1155, 1275/1274, 1716/1715, 2080/2079, 2200/2197, 2431/2430 | [⟨422 669 980 1185 1460 1562 1725]] | −0.1744 | 0.1151 | 4.05 |
2.3.5.7.11.13.17.19 | 1156/1155, 1216/1215, 1275/1274, 1331/1330, 1445/1444, 1716/1715, 2200/2197 | [⟨422 669 980 1185 1460 1562 1725 1793]] | −0.1839 | 0.1106 | 3.89 |
2.3.5.7.11.13.17.19.23 | 736/735, 1156/1155, 1216/1215, 1275/1274, 1331/1330, 1445/1444, 1496/1495, 1716/1715 | [⟨422 669 980 1185 1460 1562 1725 1793 1909]] | −0.1675 | 0.1142 | 4.02 |
- 422et has lower absolute errors than any previous equal temperaments in the 17-, 19-, and 23-limit. In the 17- and 19-limit it beats 400 and is bettered by 460. In the 23-limit it beats 373g and is bettered by 525.
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 81\422 | 230.33 | 8/7 | Gamera |
1 | 111\422 | 315.64 | 6/5 | Egads |
1 | 153\422 | 435.07 | 9/7 | Supermajor |
1 | 207\422 | 588.63 | 128/91 | Countritonic |
2 | 25\422 | 71.09 | 25/24 | Vishnu / acyuta |
2 | 81\422 | 230.33 | 8/7 | Hemigamera |
2 | 153\422 (58\422) |
435.07 (164.93) |
9/7 (11/10) |
Semisupermajor |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct