|
|
Line 1: |
Line 1: |
| {{Infobox ET}} | | {{Infobox ET}} |
| The '''division of the 10th harmonic into 40 equal parts''' (40ED10) is related to [[12edo|12EDO]], but with 10/1 instead of 2/1 being just. The step size (99.657843 [[cent]]s) of this [[equal-step tuning]] is very close to 1\12 (one step of 12 EDO).
| | {{ED intro}} |
|
| |
|
| The octave, which is 12\40 = 3\10, is compressed by about 4.1 cents. | | == Theory == |
| | 40ed10 is related to [[12edo]], but with 10/1 instead of 2/1 being just. The octave, which comes from [[10ed10]], is compressed from pure by about 4.1 cents. |
|
| |
|
| == Theory == | | === Harmonics === |
| Since 40ED10 has relations to the proximity of 1024 to 1000, just like 12EDO it tempers out the lesser diesis of [[128/125]]. However in this situation the tempering has a different interpretation, namely that "in favor of 1000".
| | {{Harmonics in equal|40|10|1|intervals=integer}} |
| | {{Harmonics in equal|40|10|1intervals=integer|start=12|columns=12|collapsed=1|title=Approximation of harmonics in 40ed10 (continued)}} |
|
| |
|
| === Interval === | | == Intervals == |
| {| class="wikitable" | | {| class="wikitable center-1 right-2" |
| |- | | |- |
| ! | degree | | ! # |
| ! | cents value | | ! Cents value |
| ! | corresponding <br>JI intervals | | ! Approximate ratio |
| ! | comments
| |
| |- | | |- |
| | | 0
| | | 0 |
| | | 0.0000
| | | 0.0000 |
| | | '''exact [[1/1]]''' | | | [[1/1]] |
| | |
| |
| |- | | |- |
| | | 1
| | | 1 |
| | | 99.6578
| | | 99.6578 |
| | | [[18/17]]
| | | [[18/17]] |
| | |
| |
| |- | | |- |
| | | 2
| | | 2 |
| | | 199.3157
| | | 199.3157 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 3
| | | 3 |
| | | 298.9735
| | | 298.9735 |
| | | [[19/16]]
| | | [[19/16]] |
| | |
| |
| |- | | |- |
| | | 4
| | | 4 |
| | | 398.6314
| | | 398.6314 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 5
| | | 5 |
| | | 498.2892
| | | 498.2892 |
| | | [[4/3]]
| | | [[4/3]] |
| | |
| |
| |- | | |- |
| | | 6
| | | 6 |
| | | 597.9471
| | | 597.9471 |
| | | [[24/17]]
| | | [[24/17]] |
| | |
| |
| |- | | |- |
| | | 7
| | | 7 |
| | | 697.6049
| | | 697.6049 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 8
| | | 8 |
| | | 797.2627
| | | 797.2627 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 9
| | | 9 |
| | | 896.9206
| | | 896.9206 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 10
| | | 10 |
| | | 996.5784
| | | 996.5784 |
| | | [[16/9]]
| | | [[16/9]] |
| | |
| |
| |- | | |- |
| | | 11
| | | 11 |
| | | 1096.2363
| | | 1096.2363 |
| | | [[32/17]]
| | | [[32/17]] |
| | |
| |
| |- | | |- |
| | | 12
| | | 12 |
| | | 1195.8941
| | | 1195.8941 |
| | | | | | [[2/1]] |
| | | compressed [[octave]]
| |
| |- | | |- |
| | | 13
| | | 13 |
| | | 1295.5520
| | | 1295.5520 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 14
| | | 14 |
| | | 1395.2098
| | | 1395.2098 |
| | | [[28/25|56/25]]
| | | [[28/25|56/25]] |
| | |
| |
| |- | | |- |
| | | 15
| | | 15 |
| | | 1494.8676
| | | 1494.8676 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 16
| | | 16 |
| | | 1594.5255
| | | 1594.5255 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 17
| | | 17 |
| | | 1694.1833
| | | 1694.1833 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 18
| | | 18 |
| | | 1793.8412
| | | 1793.8412 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 19
| | | 19 |
| | | 1893.4990
| | | 1893.4990 |
| | | [[112/75|224/75]]
| | | [[112/75|224/75]] |
| | |
| |
| |- | | |- |
| | | 20
| | | 20 |
| | | 1993.1569
| | | 1993.1569 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 21
| | | 21 |
| | | 2092.8147
| | | 2092.8147 |
| | | 375/112
| | | 375/112 |
| | |
| |
| |- | | |- |
| | | 22
| | | 22 |
| | | 2192.4725
| | | 2192.4725 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 23
| | | 23 |
| | | 2292.1304
| | | 2292.1304 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 24
| | | 24 |
| | | 2391.7882
| | | 2391.7882 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 25
| | | 25 |
| | | 2491.4461
| | | 2491.4461 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 26
| | | 26 |
| | | 2591.1039
| | | 2591.1039 |
| | | 125/28
| | | 125/28 |
| | |
| |
| |- | | |- |
| | | 27
| | | 27 |
| | | 2690.7618
| | | 2690.7618 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 28
| | | 28 |
| | | 2790.4196
| | | 2790.4196 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 29
| | | 29 |
| | | 2890.0774
| | | 2890.0774 |
| | | 85/16
| | | 85/16 |
| | |
| |
| |- | | |- |
| | | 30
| | | 30 |
| | | 2989.7353
| | | 2989.7353 |
| | | [[45/32|45/8]]
| | | [[45/32|45/8]] |
| | |
| |
| |- | | |- |
| | | 31
| | | 31 |
| | | 3089.3931
| | | 3089.3931 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 32
| | | 32 |
| | | 3189.0510
| | | 3189.0510 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 33
| | | 33 |
| | | 3288.7088
| | | 3288.7088 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 34
| | | 34 |
| | | 3388.3667
| | | 3388.3667 |
| | | 85/12
| | | 85/12 |
| | |
| |
| |- | | |- |
| | | 35
| | | 35 |
| | | 3488.0245
| | | 3488.0245 |
| | | [[15/2]]
| | | [[15/2]] |
| | |
| |
| |- | | |- |
| | | 36
| | | 36 |
| | | 3587.6823
| | | 3587.6823 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 37
| | | 37 |
| | | 3687.3402
| | | 3687.3402 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 38
| | | 38 |
| | | 3786.9980
| | | 3786.9980 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 39
| | | 39 |
| | | 3886.6559
| | | 3886.6559 |
| | | 85/9
| | | 85/9 |
| | |
| |
| |- | | |- |
| | | 40
| | | 40 |
| | | 3986.3137
| | | 3986.3137 |
| | | '''exact [[10/1]]''' | | | [[10/1]] |
| | |
| |
| |} | | |} |
|
| |
|
Line 229: |
Line 189: |
|
| |
|
| == Regular temperaments == | | == Regular temperaments == |
| 40ED10 can also be thought of as a [[generator]] of the 2.3.5.17.19 [[Subgroup temperaments|subgroup temperament]] which tempers out 4624/4617, 6144/6137, and 6885/6859, which is a [[cluster temperament]] with 12 clusters of notes in an octave (''quintilischis'' temperament). This temperament is supported by {{Optimal ET sequence|12, 253, 265, 277, 289, 301, 313}}, and [[325edo|325]] EDOs.
| | 40ed10 can also be thought of as a [[generator]] of the 2.3.5.17.19 [[subgroup temperaments|subgroup temperament]] which tempers out 4624/4617, 6144/6137, and 6885/6859, which is a [[cluster temperament]] with 12 clusters of notes in an octave (''quintilischis'' temperament). This temperament is supported by {{Optimal ET sequence| 12-, 253-, 265-, 277-, 289-, 301-, 313-, and 325edo }}. |
| | |
| Tempering out 400/399 (equating 20/19 and 21/20) leads ''[[Schismatic family #Quintilipyth|quintilipyth]]'' (12&253), and tempering out 476/475 (equating 19/17 with 28/25) leads ''[[Schismatic family #Quintaschis|quintaschis]]'' (12&289).
| |
| | |
|
| |
|
| ; <font style="font-size: 1.15em">Quintilischis (12&289)</font>
| | Tempering out 400/399 (equating 20/19 and 21/20) leads to [[quintilipyth]] (12 & 253), and tempering out 476/475 (equating 19/17 with 28/25) leads to [[quintaschis]] (12 & 289). |
| '''2.3.5.17.19 subgroup'''<br>
| |
| Comma list: 4624/4617, 6144/6137, 6885/6859<br>
| |
| Gencom: [2 18/17; 4624/4617 6144/6137 6885/6859]<br>
| |
| Gencom mapping: [{{val|1 2 -1 5 4}}, {{val|0 -5 40 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.652<br>
| |
| {{Optimal ET sequence|legend=1| 12, 253, 265, 277, 289 }}<br>
| |
| RMS error: 0.1636 cents<br><br>
| |
| ; <font style="font-size: 1.15em">[[Schismatic family #Quintilipyth|Quintilipyth]] (12 & 253)</font>
| |
| '''7-limit'''<br>
| |
| Comma list: 32805/32768, 9765625/9680832<br>
| |
| Mapping: [{{val|1 2 -1 -4}}, {{val|0 -5 40 82}}]<br>
| |
| POTE generator: ~625/588 = 99.625<br>
| |
| {{Optimal ET sequence|legend=1| 12, 253, 265 }}<br>
| |
| Badness: 0.253966<br><br>
| |
| '''11-limit'''<br>
| |
| Comma list: 1375/1372, 4375/4356, 32805/32768<br>
| |
| Mapping: [{{val|1 2 -1 -4 -7}}, {{val|0 -5 40 82 126}}]<br>
| |
| POTE generator: ~35/33 = 99.616<br>
| |
| {{Optimal ET sequence|legend=1| 12, 253, 265, 518c, 783cc }}<br>
| |
| Badness: 0.113044<br><br>
| |
| '''13-limit'''<br>
| |
| Comma list: 1375/1372, 2080/2079, 4375/4356, 10648/10647<br>
| |
| Mapping: [{{val|1 2 -1 -4 -7 -9}}, {{val|0 -5 40 82 126 153}}]<br>
| |
| POTE generator: ~35/33 = 99.612<br>
| |
| {{Optimal ET sequence|legend=1| 12f, 253, 518c, 771cc }}<br>
| |
| Badness: 0.069127<br><br>
| |
| '''17-limit'''<br>
| |
| Comma list: 375/374, 595/594, 833/832, 1375/1372, 8624/8619<br>
| |
| Mapping: [{{val|1 2 -1 -4 -7 -9 5}}, {{val|0 -5 40 82 126 153 -11}}]<br>
| |
| POTE generator: ~18/17 = 99.612<br>
| |
| {{Optimal ET sequence|legend=1| 12f, 253, 518c, 771cc }}<br>
| |
| Badness: 0.045992<br><br>
| |
| '''19-limit'''<br>
| |
| Comma list: 375/374, 400/399, 495/494, 595/594, 1375/1372, 3978/3971<br>
| |
| Mapping: [{{val|1 2 -1 -4 -7 -9 5 4}}, {{val|0 -5 40 82 126 153 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.615<br>
| |
| {{Optimal ET sequence|legend=1| 12f, 253, 265, 518ch }}<br>
| |
| Badness: 0.038155<br><br>
| |
| ; <font style="font-size: 1.15em">[[Schismatic family #Quintaschis|Quintaschis]] (12 & 289)</font>
| |
| '''7-limit'''<br>
| |
| Comma list: 32805/32768, 49009212/48828125<br>
| |
| Mapping: [{{val|1 2 -1 -5}}, {{val|0 -5 40 94}}]<br>
| |
| POTE generator: ~200/189 = 99.664<br>
| |
| {{Optimal ET sequence|legend=1| 12, 277d, 289 }}<br>
| |
| Badness: 0.132890<br><br>
| |
| '''11-limit'''<br>
| |
| Comma list: 441/440, 32805/32768, 1953125/1951488<br>
| |
| Mapping: [{{val|1 2 -1 -5 -8}}, {{val|0 -5 40 94 138}}]<br>
| |
| POTE generator: ~35/33 = 99.653<br>
| |
| {{Optimal ET sequence|legend=1| 12, 277d, 289 }}<br>
| |
| Badness: 0.111477<br><br>
| |
| '''13-limit'''<br>
| |
| Comma list: 364/363, 441/440, 32805/32768, 109512/109375<br>
| |
| Mapping: [{{val|1 2 -1 -5 -8 -11}}, {{val|0 -5 40 94 138 177}}]<br>
| |
| POTE generator: ~35/33 = 99.658<br>
| |
| {{Optimal ET sequence|legend=1| 12f, 277df, 289 }}<br>
| |
| Badness: 0.074218<br><br>
| |
| '''17-limit'''<br>
| |
| Comma list: 364/363, 441/440, 595/594, 3757/3750, 32805/32768<br>
| |
| Mapping: [{{val|1 2 -1 -5 -8 -11 5}}, {{val|0 -5 40 94 138 177 -11}}]<br>
| |
| POTE generator: ~18/17 = 99.656<br>
| |
| {{Optimal ET sequence|legend=1| 12f, 277df, 289 }}<br>
| |
| Badness: 0.050571<br><br>
| |
| '''19-limit'''<br>
| |
| Comma list: 364/363, 441/440, 476/475, 595/594, 3757/3750, 6885/6859<br>
| |
| Mapping: [{{val|1 2 -1 -5 -8 -11 5 4}}, {{val|0 -5 40 94 138 177 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.659<br>
| |
| {{Optimal ET sequence|legend=1| 12f, 277df, 289 }}<br>
| |
| Badness: 0.042120<br><br>
| |
| ; <font style="font-size: 1.15em">[[Schismatic family #Quintaschis|Quintahelenic]] (12 & 301)</font>
| |
| '''11-limit'''<br>
| |
| Comma list: 5632/5625, 8019/8000, 151263/151250<br>
| |
| Mapping: [{{val|1 2 -1 -5 -9}}, {{val|0 -5 40 94 150}}]<br>
| |
| POTE generator: ~200/189 = 99.671<br>
| |
| {{Optimal ET sequence|legend=1| 12, 289e, 301, 915, 1216ce }}<br>
| |
| Badness: 0.082225<br><br>
| |
| '''13-limit'''<br>
| |
| Comma list: 847/845, 1716/1715, 5632/5625, 8019/8000<br>
| |
| Mapping: [{{val|1 2 -1 -5 -9 -11}}, {{val|0 -5 40 94 150 177}}]<br>
| |
| POTE generator: ~200/189 = 99.661<br>
| |
| {{Optimal ET sequence|legend=1| 12f, 289e, 301 }}<br>
| |
| Badness: 0.055570<br><br>
| |
| '''17-limit'''<br>
| |
| Comma list: 561/560, 833/832, 847/845, 1701/1700, 3757/3750<br>
| |
| Mapping: [{{val|1 2 -1 -5 -9 -11 5}}, {{val|0 -5 40 94 150 177 -11}}]<br>
| |
| POTE generator: ~18/17 = 99.665<br>
| |
| {{Optimal ET sequence|legend=1| 12f, 289e, 301 }}<br>
| |
| Badness: 0.040412<br><br>
| |
| '''19-limit'''<br>
| |
| Comma list: 476/475, 495/494, 561/560, 833/832, 847/845, 1701/1700<br>
| |
| Mapping: [{{val|1 2 -1 -5 -9 -11 5 4}}, {{val|0 -5 40 94 150 177 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.668<br>
| |
| {{Optimal ET sequence|legend=1| 12f, 289e, 301 }}<br>
| |
| Badness: 0.036840<br><br>
| |
| ; <font style="font-size: 1.15em">[[Schismatic family #Quintaschis|Quintahelenoid]] (12 & 301)</font>
| |
| '''13-limit'''<br>
| |
| Comma list: 729/728, 1001/1000, 4096/4095, 86515/86436<br>
| |
| Mapping: [{{val|1 2 -1 -5 -9 14}}, {{val|0 -5 40 94 150 -124}}]<br>
| |
| POTE generator: ~200/189 = 99.672<br>
| |
| {{Optimal ET sequence|legend=1| 12, 301, 614, 915 }}<br>
| |
| Badness: 0.066108<br><br>
| |
| '''17-limit'''<br>
| |
| Comma list: 561/560, 729/728, 1001/1000, 4096/4095, 14161/14157<br>
| |
| Mapping: [{{val|1 2 -1 -5 -9 14 5}}, {{val|0 -5 40 94 150 -124 -11}}]<br>
| |
| POTE generator: ~18/17 = 99.671<br>
| |
| {{Optimal ET sequence|legend=1| 12, 301, 915gg, 1216cegg }}<br>
| |
| Badness: 0.047908<br><br>
| |
| '''19-limit'''<br>
| |
| Comma list: 476/475, 561/560, 729/728, 1001/1000, 4096/4095, 6144/6137<br>
| |
| Mapping: [{{val|1 2 -1 -5 -9 14 5 4}}, {{val|0 -5 40 94 150 -124 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.672<br>
| |
| {{Optimal ET sequence|legend=1| 12, 301, 614gh, 915gghh }}<br>
| |
| Badness: 0.039542<br><br>
| |
|
| |
|
| == See also == | | == See also == |
| * [[12edo|12EDO]] - relative EDO | | * [[12edo]] – relative edo |
| * [[19ed3|19ED3]] - relative ED3 | | * [[19ed3]] – relative ed3 |
| * [[28ed5|28ED5]] - relative ED5 | | * [[28ed5]] – relative ed5 |
| * [[31ed6|31ED6]] - relative ED6 | | * [[31ed6]] – relative ed6 |
| * [[34ed7|34ED7]] - relative ED7 | | * [[34ed7]] – relative ed7 |
| * [[42ed11|42ED11]] - relative ED11 | | * [[42ed11]] – relative ed11 |
| * [[18/17s equal temperament|AS18/17]] - relative [[AS|ambitonal sequence]] | | * [[1ed18/17|AS18/17]] – relative [[AS|ambitonal sequence]] |
|
| |
|
| [[Category:Sonifications]] | | [[Category:Sonifications]] |
Prime factorization
|
23 × 5
|
Step size
|
99.6578 ¢
|
Octave
|
12\40ed10 (1195.89 ¢) (→ 3\10ed10)
|
Twelfth
|
19\40ed10 (1893.5 ¢)
|
Consistency limit
|
10
|
Distinct consistency limit
|
6
|
40 equal divisions of the 10th harmonic (abbreviated 40ed10) is a nonoctave tuning system that divides the interval of 10/1 into 40 equal parts of about 99.7 ¢ each. Each step represents a frequency ratio of 101/40, or the 40th root of 10.
Theory
40ed10 is related to 12edo, but with 10/1 instead of 2/1 being just. The octave, which comes from 10ed10, is compressed from pure by about 4.1 cents.
Harmonics
Approximation of harmonics in 40ed10
Harmonic
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
Error
|
Absolute (¢)
|
-4.1
|
-8.5
|
-8.2
|
+4.1
|
-12.6
|
+19.5
|
-12.3
|
-16.9
|
+0.0
|
+34.3
|
-16.7
|
Relative (%)
|
-4.1
|
-8.5
|
-8.2
|
+4.1
|
-12.6
|
+19.6
|
-12.4
|
-17.0
|
+0.0
|
+34.4
|
-16.7
|
Steps (reduced)
|
12 (12)
|
19 (19)
|
24 (24)
|
28 (28)
|
31 (31)
|
34 (34)
|
36 (36)
|
38 (38)
|
40 (0)
|
42 (2)
|
43 (3)
|
Approximation of harmonics in 40ed10 (continued)
Harmonic
|
13
|
14
|
15
|
16
|
17
|
18
|
19
|
20
|
21
|
22
|
23
|
24
|
Error
|
Absolute (¢)
|
+44.1
|
+15.4
|
-4.4
|
-16.4
|
-21.7
|
-21.0
|
-15.0
|
-4.1
|
+11.1
|
+30.2
|
-46.8
|
-20.8
|
Relative (%)
|
+44.2
|
+15.5
|
-4.4
|
-16.5
|
-21.8
|
-21.1
|
-15.0
|
-4.1
|
+11.1
|
+30.3
|
-46.9
|
-20.8
|
Steps (reduced)
|
45 (5)
|
46 (6)
|
47 (7)
|
48 (8)
|
49 (9)
|
50 (10)
|
51 (11)
|
52 (12)
|
53 (13)
|
54 (14)
|
54 (14)
|
55 (15)
|
Intervals
#
|
Cents value
|
Approximate ratio
|
0
|
0.0000
|
1/1
|
1
|
99.6578
|
18/17
|
2
|
199.3157
|
|
3
|
298.9735
|
19/16
|
4
|
398.6314
|
|
5
|
498.2892
|
4/3
|
6
|
597.9471
|
24/17
|
7
|
697.6049
|
|
8
|
797.2627
|
|
9
|
896.9206
|
|
10
|
996.5784
|
16/9
|
11
|
1096.2363
|
32/17
|
12
|
1195.8941
|
2/1
|
13
|
1295.5520
|
|
14
|
1395.2098
|
56/25
|
15
|
1494.8676
|
|
16
|
1594.5255
|
|
17
|
1694.1833
|
|
18
|
1793.8412
|
|
19
|
1893.4990
|
224/75
|
20
|
1993.1569
|
|
21
|
2092.8147
|
375/112
|
22
|
2192.4725
|
|
23
|
2292.1304
|
|
24
|
2391.7882
|
|
25
|
2491.4461
|
|
26
|
2591.1039
|
125/28
|
27
|
2690.7618
|
|
28
|
2790.4196
|
|
29
|
2890.0774
|
85/16
|
30
|
2989.7353
|
45/8
|
31
|
3089.3931
|
|
32
|
3189.0510
|
|
33
|
3288.7088
|
|
34
|
3388.3667
|
85/12
|
35
|
3488.0245
|
15/2
|
36
|
3587.6823
|
|
37
|
3687.3402
|
|
38
|
3786.9980
|
|
39
|
3886.6559
|
85/9
|
40
|
3986.3137
|
10/1
|
Miscellany
It is possible to call this division a form of kilobyte tuning, as
[math]\displaystyle{ 2^{10} \approx 10^{3} = 1024 \approx 1000 }[/math];
which lies in the basis of using a "decimal" prefix to an otherwise binary unit of information.
Regular temperaments
40ed10 can also be thought of as a generator of the 2.3.5.17.19 subgroup temperament which tempers out 4624/4617, 6144/6137, and 6885/6859, which is a cluster temperament with 12 clusters of notes in an octave (quintilischis temperament). This temperament is supported by 12-, 253-, 265-, 277-, 289-, 301-, 313-, and 325edo.
Tempering out 400/399 (equating 20/19 and 21/20) leads to quintilipyth (12 & 253), and tempering out 476/475 (equating 19/17 with 28/25) leads to quintaschis (12 & 289).
See also