Fudging: Difference between revisions
m cleanup, todo added |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(8 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
''Fudging'', or virtual tempering, is the use of one [[just intonation]] interval to approximate another | '''Fudging''', or virtual tempering, is the use of one [[just intonation]] interval to approximate another. | ||
== Fudgers == | |||
Below are listed fudging intervals (or '''fudgers''') which are all ratios between two 15-limit [[tonality diamond]] intervals (listed in the fifth column) which come within a comma of less than eight cents (listed in the fourth column) of a 15-limit tonality diamond interval (listed in the third column). If the [[comma]] is less than 1, the fudger is flat of the interval it approximates; if greater than 1, sharp of it. | |||
=== Up-fudge === | |||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | ! Fudger | ||
! | ! Cents | ||
! | ! Approximately | ||
! | ! Comma(s) | ||
! ( | ! (Example) intervals | ||
! | ! Name | ||
|- | |- | ||
| 242/225 | | [[242/225]] | ||
| 126.098 | | 126.098 | ||
| 15/14, 14/13 | | 15/14, 14/13 | ||
Line 81: | Line 77: | ||
| | | | ||
|- | |- | ||
| 81/70 | | [[81/70]] | ||
| 252.680 | | 252.680 | ||
| 15/13 | | 15/13 | ||
Line 88: | Line 84: | ||
| | | | ||
|- | |- | ||
| 75/64 | | [[75/64]] | ||
| 274.582 | | 274.582 | ||
| 7/6 | | 7/6 | ||
Line 102: | Line 98: | ||
| | | | ||
|- | |- | ||
| 32/27 | | [[32/27]] | ||
| 294.135 | | 294.135 | ||
| 13/11 | | 13/11 | ||
Line 116: | Line 112: | ||
| | | | ||
|- | |- | ||
| 60/49 | | [[60/49]] | ||
| 350.617 | | 350.617 | ||
| 11/9 | | 11/9 | ||
Line 123: | Line 119: | ||
| | | | ||
|- | |- | ||
| 49/40 | | [[49/40]] | ||
| 351.338 | | 351.338 | ||
| 11/9 | | 11/9 | ||
Line 130: | Line 126: | ||
| | | | ||
|- | |- | ||
| 100/81 | | [[100/81]] | ||
| 364.807 | | 364.807 | ||
| 16/13 | | 16/13 | ||
Line 144: | Line 140: | ||
| | | | ||
|- | |- | ||
| 80/63 | | [[80/63]] | ||
| 413.578 | | 413.578 | ||
| 14/11 | | 14/11 | ||
Line 151: | Line 147: | ||
| | | | ||
|- | |- | ||
| 32/25 | | [[32/25]] | ||
| 427.373 | | 427.373 | ||
| 9/7 | | 9/7 | ||
Line 158: | Line 154: | ||
| | | | ||
|- | |- | ||
| 35/27 | | [[35/27]] | ||
| 449.275 | | 449.275 | ||
| 13/10 | | 13/10 | ||
Line 172: | Line 168: | ||
| | | | ||
|- | |- | ||
| 49/36 | | [[49/36]] | ||
| 533.742 | | 533.742 | ||
| 15/11 | | 15/11 | ||
Line 186: | Line 182: | ||
| | | | ||
|- | |- | ||
| 48/35 | | [[48/35]] | ||
| 546.815 | | 546.815 | ||
| 11/8 | | 11/8 | ||
Line 207: | Line 203: | ||
| | | | ||
|- | |- | ||
| 25/18 | | [[25/18]] | ||
| 568.717 | | 568.717 | ||
| 18/13 | | 18/13 | ||
Line 214: | Line 210: | ||
| | | | ||
|- | |- | ||
| 36/25 | | [[36/25]] | ||
| 631.283 | | 631.283 | ||
| 13/9 | | 13/9 | ||
Line 235: | Line 231: | ||
| | | | ||
|- | |- | ||
| 35/24 | | [[35/24]] | ||
| 653.185 | | 653.185 | ||
| 16/11 | | 16/11 | ||
Line 263: | Line 259: | ||
| | | | ||
|- | |- | ||
| 54/35 | | [[54/35]] | ||
| 750.725 | | 750.725 | ||
| 20/13 | | 20/13 | ||
Line 270: | Line 266: | ||
| | | | ||
|- | |- | ||
| 25/16 | | [[25/16]] | ||
| 772.627 | | 772.627 | ||
| 14/9 | | 14/9 | ||
Line 305: | Line 301: | ||
| | | | ||
|- | |- | ||
| 49/30 | | [[49/30]] | ||
| 849.383 | | 849.383 | ||
| 18/11 | | 18/11 | ||
Line 312: | Line 308: | ||
| | | | ||
|- | |- | ||
| 105/64 | | [[105/64]] | ||
| 857.095 | | 857.095 | ||
| 18/11 | | 18/11 | ||
| 385/384 | | 385/384 | ||
| [16/15 7/4 | | [16/15 7/4] | ||
| | | | ||
|- | |- | ||
| 27/16 | | [[27/16]] | ||
| 905.865 | | 905.865 | ||
| 22/13 | | 22/13 | ||
Line 333: | Line 329: | ||
| | | | ||
|- | |- | ||
| 128/75 | | [[128/75]] | ||
| 925.418 | | 925.418 | ||
| 12/7 | | 12/7 | ||
Line 340: | Line 336: | ||
| | | | ||
|- | |- | ||
| 140/81 | | [[140/81]] | ||
| 947.320 | | 947.320 | ||
| 26/15 | | 26/15 | ||
Line 368: | Line 364: | ||
| | | | ||
|- | |- | ||
| 64/35 | | [[64/35]] | ||
| 1044.86 | | 1044.86 | ||
| 11/6 | | 11/6 | ||
Line 424: | Line 420: | ||
| undecimal secor | | undecimal secor | ||
|- | |- | ||
| 28/25 | | [[28/25]] | ||
| 196.198 | | 196.198 | ||
| 9/8 | | 9/8 | ||
Line 431: | Line 427: | ||
| | | | ||
|- | |- | ||
| 224/195 | | [[224/195]] | ||
| 240.030 | | 240.030 | ||
| 15/13 | | 15/13 | ||
Line 445: | Line 441: | ||
| | | | ||
|- | |- | ||
| 77/60 | | [[77/60]] | ||
| 431.875 | | 431.875 | ||
| 9/7 | | 9/7 | ||
Line 452: | Line 448: | ||
| | | | ||
|- | |- | ||
| 110/81 | | [[110/81]] | ||
| 529.812 | | 529.812 | ||
| 15/11 | | 15/11 | ||
Line 473: | Line 469: | ||
| | | | ||
|- | |- | ||
| 81/55 | | [[81/55]] | ||
| 670.188 | | 670.188 | ||
| 22/15 | | 22/15 | ||
Line 501: | Line 497: | ||
| | | | ||
|- | |- | ||
| 25/14 | | [[25/14]] | ||
| 1003.802 | | 1003.802 | ||
| 16/9 | | 16/9 | ||
Line 562: | Line 558: | ||
| | | | ||
|- | |- | ||
| 256/225 | | [[256/225]] | ||
| 223.463 | | 223.463 | ||
| 8/7 | | 8/7 | ||
Line 597: | Line 593: | ||
| | | | ||
|- | |- | ||
| 27/22 | | [[27/22]] | ||
| 354.547 | | 354.547 | ||
| 11/9, 16/13 | | 11/9, 16/13 | ||
Line 681: | Line 677: | ||
| | | | ||
|- | |- | ||
| 45/32 | | [[45/32]] | ||
| 590.224 | | 590.224 | ||
| 7/5 | | 7/5 | ||
Line 688: | Line 684: | ||
| | | | ||
|- | |- | ||
| 64/45 | | [[64/45]] | ||
| 609.776 | | 609.776 | ||
| 10/7 | | 10/7 | ||
Line 697: | Line 693: | ||
| 75/52 | | 75/52 | ||
| 634.055 | | 634.055 | ||
| 13/9 | |||
| 675/676 | | 675/676 | ||
| [16/15 20/13] | | [16/15 20/13] | ||
| | | | ||
Line 836: | Line 832: | ||
|} | |} | ||
===Down-fudge=== | === Down-fudge === | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 1,441: | Line 1,436: | ||
|} | |} | ||
[[Category:15-limit]] | == Limit-raising and limit-lowering fudgers == | ||
A limit-raising fudger is a p prime limit interval which approximates to a q prime limit consonance, with p<q. An example is 100/77, which is 1001/1000 (1.7 cents) flat of [[13/10]], and which arises in 11-limit scales as the interval between 11/10 and 10/7, giving 13-limit harmony "for free", so to speak. | |||
A limit-lowering fudger is an interval such as the marvelous fourth, 75/56, which is 225/224 (7.7 cents) sharp of 4/3, and which arises very often in 7-limit JI scales as the interval between 16/15 and 10/7, 7/5 and 15/8, 8/5 and 15/7, and 28/15 and 5/2, giving a 3-limit interval approximated in the 7-limit. | |||
== Tempering fudging commas == | |||
By [[tempering out]] the fudging commas, the error in the fudging may be distributed evenly. Since 225/224, 385/384 and 540/539 occur so commonly as fudging commas, marvel tempering in particular is often an excellent means to introduce smooth 7- and 11-limit harmonies into 5- or 7- limit scales. Adding 441/440 to that list results in miracle tempering, another excellent smoothing option. | |||
However, indiscriminate tempering can lead to problems. For example, [[112/75]], 121/81, 338/225, 182/121 and 176/117 are all fudged fifths, with commas [[676/675]], [[364/363]], [[352/351]], [[243/242]] and [[225/224]]. Tempering them all out leads to 34d tempering, a rather crude system by comparison. | |||
[[Category:15-odd-limit]] | |||
[[Category:Method]] | [[Category:Method]] | ||
[[Category: | [[Category:Terms]] | ||
[[Category: | [[Category:Lists of intervals]] | ||
[[Category:Just intonation]] | [[Category:Just intonation]] | ||
Latest revision as of 01:24, 24 November 2024
Fudging, or virtual tempering, is the use of one just intonation interval to approximate another.
Fudgers
Below are listed fudging intervals (or fudgers) which are all ratios between two 15-limit tonality diamond intervals (listed in the fifth column) which come within a comma of less than eight cents (listed in the fourth column) of a 15-limit tonality diamond interval (listed in the third column). If the comma is less than 1, the fudger is flat of the interval it approximates; if greater than 1, sharp of it.
Up-fudge
Fudger | Cents | Approximately | Comma(s) | (Example) intervals | Name |
---|---|---|---|---|---|
242/225 | 126.098 | 15/14, 14/13 | 3388/3375, 1573/1575 | [15/11 22/15] | |
27/25 | 133.238 | 14/13, 13/12 | 351/350, 324/325 | [10/9 6/5] | large limma |
121/112 | 133.810 | 14/13, 13/12 | 1573/1568, 363/364 | [14/11 11/8] | |
225/208 | 136.010 | 14/13, 13/12 | 225/224, 675/676 | [16/15 15/13] | |
49/45 | 147.428 | 12/11 | 539/540 | [15/14 7/6] | swetismic neutral second |
35/32 | 155.140 | 12/11 | 385/384 | [16/15 7/6] | septimal neutral second |
54/49 | 168.213 | 11/10 | 540/539 | [7/6 9/7] | Zalzal's mujannab |
121/105 | 245.541 | 15/13 | 1573/1575 | [14/11 22/15] | |
140/121 | 252.504 | 15/13 | 364/363 | [11/10 14/11] | |
81/70 | 252.680 | 15/13 | 351/350 | [10/9 9/7] | |
75/64 | 274.582 | 7/6 | 225/224 | [16/15 5/4] | |
33/28 | 284.447 | 13/11 | 363/364 | [12/11 9/7] | |
32/27 | 294.135 | 13/11 | 352/351 | [9/8 4/3] | |
128/105 | 342.905 | 11/9 | 384/385 | [7/4 32/15] | |
60/49 | 350.617 | 11/9 | 540/539 | [7/6 10/7] | |
49/40 | 351.338 | 11/9 | 441/440 | [8/7 7/5] | |
100/81 | 364.807 | 16/13 | 325/324 | [9/5 20/9] | |
121/98 | 364.984 | 16/13 | 1573/1568 | [14/11 11/7] | |
80/63 | 413.578 | 14/11 | 440/441 | [9/8 10/7] | |
32/25 | 427.373 | 9/7 | 224/225 | [5/4 8/5] | |
35/27 | 449.275 | 13/10 | 350/351 | [6/5 14/9] | |
100/77 | 452.484 | 13/10 | 1000/1001 | [11/10 10/7] | |
49/36 | 533.742 | 15/11 | 539/540 | [8/7 14/9] | |
308/225 | 543.606 | 15/11, 11/8 | 3388/3375, 224/225 | [15/14 22/15] | |
48/35 | 546.815 | 11/8 | 384/385 | [7/6 8/5] | |
112/81 | 561.006 | 18/13 | 728/729 | [9/8 14/9] | |
168/121 | 568.145 | 18/13 | 364/363 | [11/7 24/11] | |
25/18 | 568.717 | 18/13 | 325/324 | [6/5 5/3] | |
36/25 | 631.283 | 13/9 | 324/325 | [10/9 8/5] | |
121/84 | 631.855 | 13/9 | 363/364 | [12/11 11/7] | |
81/56 | 638.994 | 13/9 | 729/728 | [14/9 9/4] | |
35/24 | 653.185 | 16/11 | 385/384 | [16/15 14/9] | |
143/98 | 654.194 | 16/11 | 1573/1568 | [14/13 11/7] | |
225/154 | 656.394 | 16/11, 22/15 | 225/224, 3375/3388 | [22/15 15/7] | |
77/50 | 747.516 | 20/13 | 1001/1000 | [10/7 11/5] | |
54/35 | 750.725 | 20/13 | 351/350 | [10/9 12/7] | |
25/16 | 772.627 | 14/9 | 225/224 | [16/15 5/3] | |
63/40 | 786.422 | 11/7 | 441/440 | [10/9 7/4] | |
196/121 | 835.016 | 13/8 | 1568/1573 | [11/7 28/11] | |
81/50 | 835.193 | 13/8 | 324/325 | [10/9 9/5] | |
80/49 | 848.662 | 18/11 | 440/441 | [7/5 16/7] | |
49/30 | 849.383 | 18/11 | 539/540 | [15/14 7/4] | |
105/64 | 857.095 | 18/11 | 385/384 | [16/15 7/4] | |
27/16 | 905.865 | 22/13 | 351/352 | [16/15 9/5] | |
56/33 | 915.553 | 22/13 | 364/363 | [15/14 20/11] | |
128/75 | 925.418 | 12/7 | 224/225 | [5/4 32/15] | |
140/81 | 947.320 | 26/15 | 350/351 | [9/7 20/9] | |
121/70 | 947.496 | 26/15 | 363/364 | [14/11 11/5] | |
210/121 | 954.459 | 26/15 | 1575/1573 | [22/15 28/11] | |
49/27 | 1031.787 | 20/11 | 539/540 | [9/7 7/3] | |
64/35 | 1044.86 | 11/6 | 384/385 | [7/6 32/15] | |
90/49 | 1052.572 | 11/6 | 540/539 | [7/6 15/7] | |
416/225 | 1063.99 | 24/13, 13/7 | 676/675, 224/225 | [15/13 32/15] | |
224/121 | 1066.19 | 24/13, 13/7 | 364/363, 1568/1573 | [11/8 28/11] | |
50/27 | 1066.762 | 24/13, 13/7 | 325/324, 350/351 | [6/5 20/9] | |
117/110 | 106.806 | 16/15 | 351/352 | [10/9 13/11] | |
180/169 | 109.168 | 16/15 | 675/676 | [13/12 15/13] | |
77/72 | 116.234 | 16/15, 15/14 | 385/384, 539/540 | [12/11 7/6] | undecimal secor |
28/25 | 196.198 | 9/8 | 224/225 | [15/14 6/5] | |
224/195 | 240.030 | 15/13 | 224/225 | [15/14 16/13] | |
52/45 | 250.304 | 15/13 | 676/675 | [9/8 13/10] | |
77/60 | 431.875 | 9/7 | 539/540 | [15/14 11/8] | |
110/81 | 529.812 | 15/11 | 242/243 | [18/11 20/9] | |
160/117 | 541.876 | 15/11 | 352/351 | [9/8 20/13] | |
117/80 | 658.124 | 22/15 | 351/352 | [10/9 13/8] | |
81/55 | 670.188 | 22/15 | 243/242 | [10/9 18/11] | |
120/77 | 768.125 | 14/9 | 540/539 | [11/10 12/7] | |
45/26 | 949.696 | 26/15 | 675/676 | [16/15 24/13] | |
195/112 | 959.970 | 26/15 | 225/224 | [16/15 13/7] | |
25/14 | 1003.802 | 16/9 | 225/224 | [6/5 15/7] | |
144/77 | 1083.766 | 28/15, 15/8 | 540/539, 384/385 | [7/6 24/11] | |
169/90 | 1090.832 | 15/8 | 676/675 | [15/13 13/6] | |
220/117 | 1093.194 | 15/8 | 352/351 | [13/11 20/9] |
Neutral/ambiguous
fudger | cents | approximately | comma(s) | (example) intervals | names |
---|---|---|---|---|---|
130/121 | 124.205 | 15/14, 14/13 | 364/363, 845/847 | [11/10 13/11] | |
88/81 | 143.498 | 13/12, 12/11 | 352/351, 242/243 | [9/8 11/9] | undecimal subtone |
99/91 | 145.874 | 13/12, 12/11 | 1188/1183, 363/364 | [13/11 9/7] | |
256/225 | 223.463 | 8/7 | 224/225 | [15/8 32/15] | |
225/196 | 238.886 | 8/7 | 225/224 | [28/15 15/7] | |
200/169 | 291.572 | 13/11 | 2200/2197 | [13/10 20/13] | |
77/65 | 293.302 | 13/11 | 847/845 | [13/11 7/5] | |
108/91 | 296.511 | 13/11 | 1188/1183 | [13/12 9/7] | |
27/22 | 354.547 | 11/9, 16/13 | 243/242, 351/352 | [10/9 15/11] | |
225/182 | 367.184 | 16/13 | 225/224 | [26/15 15/7] | |
286/225 | 415.308 | 14/11 | 1573/1575 | [15/13 22/15] | |
225/176 | 425.219 | 14/11 | 225/224 | [16/15 15/11] | |
135/104 | 451.651 | 13/10 | 675/676 | [16/15 18/13] | |
220/169 | 456.576 | 13/10 | 2200/2197 | [13/11 20/13] | |
176/135 | 459.139 | 13/10 | 352/351 | [9/8 22/15] | |
224/165 | 529.239 | 15/11 | 224/225 | [15/14 16/11] | |
143/105 | 534.751 | 15/11 | 1573/1575 | [14/13 22/15] | |
91/66 | 556.081 | 11/8, 18/13 | 364/363, 1183/1188 | [11/7 13/6] | |
135/98 | 554.527 | 11/8 | 540/539 | [14/9 15/7] | |
104/75 | 565.945 | 18/13 | 676/675 | [15/13 8/5] | |
45/32 | 590.224 | 7/5 | 225/224 | [16/15 3/2] | |
64/45 | 609.776 | 10/7 | 224/225 | [9/8 8/5] | |
75/52 | 634.055 | 13/9 | 675/676 | [16/15 20/13] | |
132/91 | 643.919 | 13/9, 16/11 | 1188/1183, 363/364 | [13/12 11/7] | |
196/135 | 645.473 | 16/11 | 539/540 | [15/14 14/9] | |
210/143 | 665.249 | 22/15 | 1575/1573 | [22/15 28/13] | |
165/112 | 670.761 | 22/15 | 225/224 | [16/15 11/7] | |
135/88 | 740.861 | 20/13 | 351/352 | [16/15 18/11] | |
169/110 | 743.424 | 20/13 | 2197/2200 | [20/13 26/11] | |
208/135 | 748.349 | 20/13 | 676/675 | [9/8 26/15] | |
352/225 | 774.781 | 11/7 | 224/225 | [15/11 32/15] | |
225/143 | 784.692 | 11/7 | 1575/1573 | [22/15 30/13] | |
364/225 | 832.816 | 13/8 | 224/225 | [15/14 26/15] | |
44/27 | 845.453 | 13/8, 18/11 | 352/351, 242/243 | [12/11 16/9] | |
91/54 | 903.489 | 22/13 | 1183/1188 | [9/7 13/6] | |
130/77 | 906.698 | 22/13 | 845/847 | [14/13 20/11] | |
169/100 | 908.428 | 22/13 | 2197/2200 | [20/13 13/5] | |
392/225 | 961.114 | 7/4 | 224/225 | [15/14 28/15] | |
225/128 | 976.537 | 7/4 | 225/224 | [16/15 15/8] | |
81/44 | 1056.502 | 11/6, 24/13 | 243/242, 351/352 | [11/9 9/4] | |
225/121 | 1073.902 | 13/7, 28/15 | 1575/1573, 3375/3388 | [22/15 30/11] | |
121/65 | 1075.795 | 13/7, 28/15 | 847/845, 363/364 | [13/11 11/5] |
Down-fudge
fudger | cents | approximately | commas | (example) intervals |
---|---|---|---|---|
128/117 | 155.562 | 12/11 | 352/351 | [9/8 16/13] |
169/154 | 160.911 | 11/10 | 845/847 | [14/13 13/11] |
100/91 | 163.274 | 11/10 | 1000/1001 | [13/10 10/7] |
182/165 | 169.767 | 11/10 | 364/363 | [15/14 13/11] |
72/65 | 177.069 | 10/9 | 324/325 | [13/12 6/5] |
195/176 | 177.478 | 10/9 | 351/352 | [16/15 13/11] |
49/44 | 186.334 | 10/9 | 441/440 | [8/7 14/11] |
39/35 | 187.343 | 10/9 | 351/350 | [14/13 6/5] |
135/121 | 189.543 | 10/9 | 243/242 | [11/9 15/11] |
121/108 | 196.771 | 9/8 | 242/243 | [12/11 11/9] |
55/49 | 199.980 | 9/8 | 440/441 | [14/11 10/7] |
91/81 | 201.534 | 9/8 | 728/729 | [9/7 13/9] |
169/150 | 206.473 | 9/8 | 676/675 | [15/13 13/10] |
44/39 | 208.835 | 9/8 | 352/351 | [13/12 11/9] |
154/135 | 227.965 | 8/7 | 539/540 | [15/14 11/9] |
63/55 | 235.104 | 8/7 | 441/440 | [10/9 14/11] |
55/48 | 235.677 | 8/7 | 385/384 | [16/15 11/9] |
121/104 | 262.108 | 7/6 | 363/364 | [13/11 11/8] |
64/55 | 262.368 | 7/6 | 384/385 | [5/4 16/11] |
90/77 | 270.080 | 7/6 | 540/539 | [11/10 9/7] |
117/100 | 271.810 | 7/6 | 351/350 | [10/9 13/10] |
198/169 | 274.173 | 7/6 | 1188/1183 | [13/11 18/13] |
140/117 | 310.702 | 6/5 | 350/351 | [9/7 20/13] |
77/64 | 320.144 | 6/5 | 385/384 | [8/7 11/8] |
65/54 | 320.976 | 6/5 | 325/324 | [6/5 13/9] |
135/112 | 323.353 | 6/5 | 225/224 | [16/15 9/7] |
39/32 | 342.483 | 11/9 | 351/352 | [16/15 13/10] |
56/45 | 378.602 | 5/4 | 224/225 | [15/14 4/3] |
81/65 | 380.979 | 5/4 | 324/325 | [10/9 18/13] |
96/77 | 381.811 | 5/4 | 384/385 | [7/6 16/11] |
169/135 | 388.877 | 5/4 | 676/675 | [15/13 13/9] |
33/26 | 412.745 | 14/11 | 363/364 | [13/12 11/8] |
143/112 | 423.020 | 14/11 | 1573/1568 | [14/13 11/8] |
216/169 | 424.810 | 14/11 | 1188/1183 | [13/12 18/13] |
169/132 | 427.782 | 9/7 | 1183/1188 | [22/13 13/6] |
50/39 | 430.145 | 9/7 | 350/351 | [6/5 20/13] |
104/81 | 432.708 | 9/7 | 728/729 | [9/8 13/9] |
165/128 | 439.587 | 9/7 | 385/384 | [16/15 11/8] |
156/121 | 439.847 | 9/7 | 364/363 | [22/13 24/11] |
117/88 | 493.120 | 4/3 | 351/352 | [11/9 13/8] |
121/91 | 493.282 | 4/3 | 363/364 | [13/11 11/7] |
225/169 | 495.482 | 4/3 | 675/676 | [26/15 30/13] |
162/121 | 505.184 | 4/3 | 243/242 | [11/9 18/11] |
75/56 | 505.757 | 4/3 | 225/224 | [16/15 10/7] |
196/143 | 545.806 | 11/8 | 1568/1573 | [11/7 28/13] |
169/121 | 578.419 | 7/5 | 845/847 | [22/13 26/11] |
88/63 | 578.582 | 7/5 | 440/441 | [9/8 11/7] |
200/143 | 580.782 | 7/5 | 1000/1001 | [11/10 20/13] |
108/77 | 585.721 | 7/5 | 540/539 | [7/6 18/11] |
77/54 | 614.279 | 10/7 | 539/540 | [12/11 14/9] |
143/100 | 619.218 | 10/7 | 1001/1000 | [20/13 11/5] |
63/44 | 621.418 | 10/7 | 441/440 | [8/7 18/11] |
242/169 | 621.581 | 10/7 | 847/845 | [13/11 22/13] |
72/49 | 666.258 | 22/15 | 540/539 | [7/6 12/7] |
112/75 | 694.243 | 3/2 | 224/225 | [15/14 8/5] |
121/81 | 694.816 | 3/2 | 242/243 | [18/11 22/9] |
338/225 | 704.518 | 3/2 | 676/675 | [15/13 26/15] |
182/121 | 706.718 | 3/2 | 364/363 | [11/7 26/11] |
176/117 | 706.880 | 3/2 | 352/351 | [9/8 22/13] |
121/78 | 760.153 | 14/9 | 363/364 | [12/11 22/13] |
256/165 | 760.413 | 14/9 | 384/385 | [11/8 32/15] |
81/52 | 767.292 | 14/9 | 729/728 | [13/9 9/4] |
39/25 | 769.855 | 14/9 | 351/350 | [10/9 26/15] |
264/169 | 772.218 | 14/9 | 1188/1183 | [13/12 22/13] |
169/108 | 775.190 | 11/7 | 1183/1188 | [18/13 13/6] |
224/143 | 776.980 | 11/7 | 1568/1573 | [11/8 28/13] |
52/33 | 787.255 | 11/7 | 364/363 | [11/10 26/15] |
270/169 | 811.123 | 8/5 | 675/676 | [13/9 30/13] |
77/48 | 818.189 | 8/5 | 385/384 | [12/11 7/4] |
130/81 | 819.021 | 8/5 | 325/324 | [18/13 20/9] |
45/28 | 821.398 | 8/5 | 225/224 | [16/15 12/7] |
64/39 | 857.517 | 18/11 | 352/351 | [13/12 16/9] |
224/135 | 876.647 | 5/3 | 224/225 | [15/14 16/9] |
108/65 | 879.024 | 5/3 | 324/325 | [13/12 9/5] |
128/77 | 879.856 | 5/3 | 384/385 | [11/8 16/7] |
117/70 | 889.298 | 5/3 | 351/350 | [14/13 9/5] |
169/99 | 925.827 | 12/7 | 1183/1188 | [18/13 26/11] |
200/117 | 928.190 | 12/7 | 350/351 | [13/10 20/9] |
77/45 | 929.920 | 12/7 | 539/540 | [15/14 11/6] |
55/32 | 937.632 | 12/7 | 385/384 | [16/15 11/6] |
208/121 | 937.892 | 12/7 | 364/363 | [11/8 26/11] |
96/55 | 964.323 | 7/4 | 384/385 | [11/9 32/15] |
110/63 | 964.896 | 7/4 | 440/441 | [14/11 20/9] |
135/77 | 972.035 | 7/4 | 540/539 | [11/9 15/7] |
39/22 | 991.165 | 16/9 | 351/352 | [11/9 13/6] |
300/169 | 993.527 | 16/9 | 675/676 | [13/10 30/13] |
162/91 | 998.466 | 16/9 | 729/728 | [13/9 18/7] |
98/55 | 1000.02 | 16/9 | 441/440 | [10/7 28/11] |
216/121 | 1003.229 | 16/9 | 243/242 | [11/9 24/11] |
242/135 | 1010.457 | 9/5 | 242/243 | [15/11 22/9] |
70/39 | 1012.657 | 9/5 | 350/351 | [6/5 28/13] |
88/49 | 1013.666 | 9/5 | 440/441 | [14/11 16/7] |
352/195 | 1022.522 | 9/5 | 352/351 | [13/11 32/15] |
65/36 | 1022.931 | 9/5 | 325/324 | [6/5 13/6] |
165/91 | 1030.233 | 20/11 | 363/364 | [13/11 15/7] |
91/50 | 1036.726 | 20/11 | 1001/1000 | [10/7 13/5] |
308/169 | 1039.089 | 20/11 | 847/845 | [13/11 28/13] |
117/64 | 1044.438 | 11/6 | 351/352 | [16/13 9/4] |
182/99 | 1054.126 | 11/6, 24/13 | 364/363, 1183/1188 | [9/7 26/11] |
Limit-raising and limit-lowering fudgers
A limit-raising fudger is a p prime limit interval which approximates to a q prime limit consonance, with p<q. An example is 100/77, which is 1001/1000 (1.7 cents) flat of 13/10, and which arises in 11-limit scales as the interval between 11/10 and 10/7, giving 13-limit harmony "for free", so to speak.
A limit-lowering fudger is an interval such as the marvelous fourth, 75/56, which is 225/224 (7.7 cents) sharp of 4/3, and which arises very often in 7-limit JI scales as the interval between 16/15 and 10/7, 7/5 and 15/8, 8/5 and 15/7, and 28/15 and 5/2, giving a 3-limit interval approximated in the 7-limit.
Tempering fudging commas
By tempering out the fudging commas, the error in the fudging may be distributed evenly. Since 225/224, 385/384 and 540/539 occur so commonly as fudging commas, marvel tempering in particular is often an excellent means to introduce smooth 7- and 11-limit harmonies into 5- or 7- limit scales. Adding 441/440 to that list results in miracle tempering, another excellent smoothing option.
However, indiscriminate tempering can lead to problems. For example, 112/75, 121/81, 338/225, 182/121 and 176/117 are all fudged fifths, with commas 676/675, 364/363, 352/351, 243/242 and 225/224. Tempering them all out leads to 34d tempering, a rather crude system by comparison.