24/17: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>spt3125
**Imported revision 513256572 - Original comment: **
Simplify the "terminology and notation" section since it's addressed in the 17-limit page
 
(9 intermediate revisions by 7 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox Interval
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| Name = small septendecimal tritone
: This revision was by author [[User:spt3125|spt3125]] and made on <tt>2014-06-08 15:52:47 UTC</tt>.<br>
| Color name = 17u4, su 4th
: The original revision id was <tt>513256572</tt>.<br>
| Sound = jid_24_17_pluck_adu_dr220.mp3
: The revision comment was: <tt></tt><br>
}}
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**24/17**
|3 1 0 0 0 0 -1&gt;
596.9996 cents
[[media type="file" key="jid_24_17_pluck_adu_dr220.mp3"]] [[file:xenharmonic/jid_24_17_pluck_adu_dr220.mp3|sound sample]]


In [[17-limit]] [[Just Intonation]], 24/17 is the "first septendecimal tritone," measuring very nearly 597¢. It is the [[mediant]] between [[7_5|7/5]] and [[17_12|17/12]], the "second septendecimal tritone." The two septendecimal tritones are each 3¢ away from the 600¢ half-octave, and so they are well-represented in all even-numbered [[EDO]] systems, including [[12edo]]. Indeed, the latter system, containing good approximations of the 3rd and 17th harmonics, can use the half-octave as 24/17 and 17/12 in close approximations to chords such as 8:12:17 and 16:17:24. [[22edo]] is another good EDO system for using the half-octave in this way.
In [[17-limit]] [[just intonation]], '''24/17''' is the '''small septendecimal tritone''', measuring very nearly 597¢. It is the [[mediant]] between [[7/5]] and [[17/12]], the "larger septendecimal tritone". The two septendecimal tritones are each 3¢ away from the 600¢ half-octave, and so they are well-represented in all even-numbered [[edo]] systems, including [[12edo]]. Indeed, the latter system, containing good approximations of the 3rd and 17th harmonics, can use the half-octave as 24/17 and 17/12 in close approximations to chords such as 8:12:17 and 16:17:24. [[22edo]] is another good edo system for using the half-octave in this way.


See: [[Gallery of Just Intervals]]</pre></div>
== Terminology and notation ==
<h4>Original HTML content:</h4>
Conceptualization systems disagree on whether [[17/16]] should be a [[diatonic semitone]] or a [[chromatic semitone]], and as a result the disagreement propagates to all intervals of [[harmonic class|HC17]]. See [[17-limit]] for a detailed discussion.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;24_17&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;24/17&lt;/strong&gt;&lt;br /&gt;
 
|3 1 0 0 0 0 -1&amp;gt;&lt;br /&gt;
For 24/17 specifically:
596.9996 cents&lt;br /&gt;
* In [[Functional Just System]], it is an augmented fourth, separated by [[4131/4096]] from the [[729/512|Pythagorean augmented fourth (729/512)]].  
&lt;!-- ws:start:WikiTextMediaRule:0:&amp;lt;img src=&amp;quot;http://www.wikispaces.com/site/embedthumbnail/file-audio/jid_24_17_pluck_adu_dr220.mp3?h=20&amp;amp;w=240&amp;quot; class=&amp;quot;WikiMedia WikiMediaFile&amp;quot; id=&amp;quot;wikitext@@media@@type=&amp;amp;quot;file&amp;amp;quot; key=&amp;amp;quot;jid_24_17_pluck_adu_dr220.mp3&amp;amp;quot;&amp;quot; title=&amp;quot;Local Media File&amp;quot;height=&amp;quot;20&amp;quot; width=&amp;quot;240&amp;quot;/&amp;gt; --&gt;&lt;embed src="/s/mediaplayer.swf" pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-shockwave-flash" quality="high" width="240" height="20" wmode="transparent" flashvars="file=http%253A%252F%252Fxenharmonic.wikispaces.com%252Ffile%252Fview%252Fjid_24_17_pluck_adu_dr220.mp3?file_extension=mp3&amp;autostart=false&amp;repeat=false&amp;showdigits=true&amp;showfsbutton=false&amp;width=240&amp;height=20"&gt;&lt;/embed&gt;&lt;!-- ws:end:WikiTextMediaRule:0 --&gt; &lt;a href="http://xenharmonic.wikispaces.com/file/view/jid_24_17_pluck_adu_dr220.mp3/513250112/jid_24_17_pluck_adu_dr220.mp3" onclick="ws.common.trackFileLink('http://xenharmonic.wikispaces.com/file/view/jid_24_17_pluck_adu_dr220.mp3/513250112/jid_24_17_pluck_adu_dr220.mp3');"&gt;sound sample&lt;/a&gt;&lt;br /&gt;
* In [[Helmholtz-Ellis notation]], it is a diminished fifth, separated by [[2187/2176]] from the [[1024/729|Pythagorean diminished fifth (1024/729)]].  
&lt;br /&gt;
 
In &lt;a class="wiki_link" href="/17-limit"&gt;17-limit&lt;/a&gt; &lt;a class="wiki_link" href="/Just%20Intonation"&gt;Just Intonation&lt;/a&gt;, 24/17 is the &amp;quot;first septendecimal tritone,&amp;quot; measuring very nearly 597¢. It is the &lt;a class="wiki_link" href="/mediant"&gt;mediant&lt;/a&gt; between &lt;a class="wiki_link" href="/7_5"&gt;7/5&lt;/a&gt; and &lt;a class="wiki_link" href="/17_12"&gt;17/12&lt;/a&gt;, the &amp;quot;second septendecimal tritone.&amp;quot; The two septendecimal tritones are each 3¢ away from the 600¢ half-octave, and so they are well-represented in all even-numbered &lt;a class="wiki_link" href="/EDO"&gt;EDO&lt;/a&gt; systems, including &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;. Indeed, the latter system, containing good approximations of the 3rd and 17th harmonics, can use the half-octave as 24/17 and 17/12 in close approximations to chords such as 8:12:17 and 16:17:24. &lt;a class="wiki_link" href="/22edo"&gt;22edo&lt;/a&gt; is another good EDO system for using the half-octave in this way.&lt;br /&gt;
The term ''small septendecimal tritone'' omits the distinction and only describes its melodic property i.e. the size. It is said in contrast to the large septendecimal tritone of [[17/12]].  
&lt;br /&gt;
 
See: &lt;a class="wiki_link" href="/Gallery%20of%20Just%20Intervals"&gt;Gallery of Just Intervals&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
== See also ==
* [[17/12]] – its [[octave complement]]
* [[17/16]] – its [[fifth complement]]
* [[Gallery of just intervals]]
 
[[Category:Tritone]]

Latest revision as of 08:22, 4 January 2024

Interval information
Ratio 24/17
Subgroup monzo 2.3.17 [3 1 -1
Size in cents 596.9996¢
Name small septendecimal tritone
Color name 17u4, su 4th
FJS name [math]\displaystyle{ \text{A4}_{17} }[/math]
Special properties reduced
Tenney height (log2 nd) 8.67243
Weil height (log2 max(n, d)) 9.16993
Wilson height (sopfr(nd)) 26

[sound info]
Open this interval in xen-calc

In 17-limit just intonation, 24/17 is the small septendecimal tritone, measuring very nearly 597¢. It is the mediant between 7/5 and 17/12, the "larger septendecimal tritone". The two septendecimal tritones are each 3¢ away from the 600¢ half-octave, and so they are well-represented in all even-numbered edo systems, including 12edo. Indeed, the latter system, containing good approximations of the 3rd and 17th harmonics, can use the half-octave as 24/17 and 17/12 in close approximations to chords such as 8:12:17 and 16:17:24. 22edo is another good edo system for using the half-octave in this way.

Terminology and notation

Conceptualization systems disagree on whether 17/16 should be a diatonic semitone or a chromatic semitone, and as a result the disagreement propagates to all intervals of HC17. See 17-limit for a detailed discussion.

For 24/17 specifically:

The term small septendecimal tritone omits the distinction and only describes its melodic property i.e. the size. It is said in contrast to the large septendecimal tritone of 17/12.

See also