55edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
mNo edit summary
Francium (talk | contribs)
Line 11: Line 11:
Map: [<1 0 -2 2|, <0 55 150 28|]
Map: [<1 0 -2 2|, <0 55 150 28|]


EDOs: 243, 347, 590
EDOs: {{EDOs|243, 347, 590}}


====11-limit====
====11-limit====
Line 20: Line 20:
Map: [<1 0 -2 2 10|, <0 55 150 28 -227|]
Map: [<1 0 -2 2 10|, <0 55 150 28 -227|]


EDOs: 243, 347, 590
EDOs: {{EDOs|243, 347, 590}}


====13-limit====
====13-limit====
Line 29: Line 29:
Map: [<1 0 -2 2 10 2|, <0 55 150 28 -227 59|]
Map: [<1 0 -2 2 10 2|, <0 55 150 28 -227 59|]


EDOs: 243, 347, 590
EDOs: {{EDOs|243, 347, 590}}


[[Category:Edt]]
[[Category:Edt]]
[[Category:Edonoi]]
[[Category:Edonoi]]

Revision as of 22:22, 6 May 2023

← 54edt 55edt 56edt →
Prime factorization 5 × 11
Step size 34.581 ¢ 
Octave 35\55edt (1210.34 ¢) (→ 7\11edt)
Consistency limit 3
Distinct consistency limit 3

55EDT is the equal division of the third harmonic into 55 parts of 34.5810 cents each, corresponding to 34.7011 edo. It is related to the regular temperament which tempers out 420175/419904 and 205891132094649/204800000000000 in the 7-limit, which is supported by 243, 347, and 590 EDOs among others.

Related regular temperaments

243&347 temperament

7-limit

Commas: 420175/419904, |-22 30 -11>

POTE generator: ~49/48 = 34.5742

Map: [<1 0 -2 2|, <0 55 150 28|]

EDOs: 243, 347, 590

11-limit

Commas: 137781/137500, 352947/352000, 16808715/16777216

POTE generator: ~49/48 = 34.5761

Map: [<1 0 -2 2 10|, <0 55 150 28 -227|]

EDOs: 243, 347, 590

13-limit

Commas: 4459/4455, 15379/15360, 67392/67375, 83349/83200

POTE generator: ~49/48 = 34.5762

Map: [<1 0 -2 2 10 2|, <0 55 150 28 -227 59|]

EDOs: 243, 347, 590