Muggles

From Xenharmonic Wiki
Jump to navigation Jump to search

Muggles is the rank-2 temperament tempering out 126/125, the starling comma, and 525/512, Avicenna's enharmonic diesis. It is an alternative 7-limit extension to magic. 11-limit extension of the muggles include:

  • Muggles (3e & 16 or 16 & 19) – tempering out 45/44 and 385/384
  • Muggloid (3 & 16 or 16 & 19e) – tempering out 33/32 and 176/175

This temperament was named by Gene Ward Smith in 2003[1].

See Magic family #Muggles for more technical data.

Interval chain

Odd harmonics 1–13 and their inverses are in bold.

# Cents* Approximate ratios
0 0.00 1/1
1 378.5 5/4, 16/13, 26/21
2 757.0 20/13, 32/21
3 1135.4 25/13
4 313.9 6/5
5 692.4 3/2
6 1070.9 13/7, 15/8, 24/13
7 249.4 8/7, 15/13
8 627.9 10/7
9 1006.3 9/5
10 184.8 9/8
11 563.3 18/13
12 941.8 12/7
13 120.3 15/14

* In 2.3.5.7.13 CWE tuning

Tuning spectra

Muggles

Edo
generator
Eigenmonzo
(unchanged-interval)
Generator (¢) Comments
11/9 347.408
13/8 359.472
15/11 372.610
13/10 372.893
11/6 374.894
5\16 375.000
7/4 375.882
13/11 375.899
11/10 376.500
11/7 376.805
13/12 376.905
11\35 377.143
7/5 377.186
11/8 377.393 11-, 13- and 15-odd-limit minimax
[0 113 -12 -68 58 -26 377.630 13-odd-limit least squares
[0 -21 -5 27 377.640 7-odd-limit least squares
[0 134 9 -81 63 -33 377.718 15-odd-limit least squares
[0 85 -14 -62 46 377.758 11-odd-limit least squares
7/6 377.761 7-odd-limit minimax
15/13 378.249
15/14 378.419
13/9 378.489
9/7 378.534 9-odd-limit minimax
[0 93 -4 -44 378.554 9-odd-limit least squares
13/7 378.617
5/3 378.910
6\19 378.947
9/5 379.733
27/20 379.968 5-odd-limit least squares
3/2 380.391 5-odd-limit minimax
15/8 381.378
7\22 381.818
5/4 386.314

Muggloid

Edo
generator
Eigenmonzo
(unchanged-interval)
Generator (¢) Comments
13/8 359.472
11/8 369.736
13/11 372.302
11/10 372.499
13/10 372.893
5\16 375.000
11/6 375.064
7/4 375.882
15/11 376.086
11/9 376.839 11-, 13- and 15-odd-limit minimax
13/12 376.905
11\35 377.143
7/5 377.186
7/6 377.761 7-odd-limit minimax
15/13 378.249
15/14 378.419
13/9 378.489
9/7 378.534 9-odd-limit minimax
13/7 378.617
5/3 378.910
6\19 378.947
9/5 379.733
3/2 380.391 5-odd-limit minimax
15/8 381.378
7\22 381.818
5/4 386.314
11/7 391.246

Notes