Xenharmonic series
Jump to navigation
Jump to search
This is a list of xenharmonic series, i.e. xenharmonic variations on the harmonic series, [math]f(n) = n[/math], where [math]n[/math] is an integer (as it is in all formulas below).
- Ambitonal sequences: [math]f(n) = p^n[/math], where [math]p[/math] is rational
- Arithmetic frequency sequences: [math]f(n) = 1 + cn[/math], where [math]c[/math] is irrational
- Arithmetic length sequences: [math]f(n) = \frac{1}{1 + cn}[/math], where [math]c[/math] is irrational
- Arithmetic pitch sequences: [math]f(n) = p^n[/math], where [math]p[/math] is irrational
- Dumb Fibonacci series: [math]f(n) = f(n-1) + f(n-2)[/math]
- Edharmonic series: [math]f(n) = a^{H(n)}[/math]
- Isoharmonic series: [math]f(n) = c + n[/math] where [math]c[/math] is rational
- Logharmonic series: [math]f(n) = \log_b{n}[/math]
- Matharmonic series: [math]f(n) = H(n)[/math]
- Metallic harmonic series: [math]f(n) = μ_n[/math]
- Oddharmonic series: [math]f(n) = 2n-1[/math]
- Otonal sequences: [math]f(n) = 1 + cn[/math], where [math]c[/math] is rational
- Powharmonic series: [math]f(n) = n^p[/math]
- Prime harmonic series: [math]f(n) = p_n[/math], where [math]p[/math] is prime
- Subharmonic series: [math]f(n) = \frac{1}{n}[/math]
- Subparticular series: [math]f(n) = \frac{n}{n+1}[/math]
- Superparticular series: [math]f(n) = \frac{n+1}{n}[/math]
- Triangulharmonic series: [math]f(n) = \frac{n^2 + n}{2}[/math]
- Utonal sequences: [math]f(n) = \frac{1}{1 + cn}[/math], where [math]c[/math] is rational