Dicot family
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
The dicot family of temperaments tempers out 25/24, the classical chromatic semitone. The head of this family, dicot, is generated by a classical third (major and minor mean the same thing), and two such thirds give a fifth. In fact, (5/4)2 = (3/2)(25/24).
Possible tunings for dicot are 7edo, 10edo, 17edo, 24edo using the val ⟨24 38 55] (24c), and 31edo using the val ⟨31 49 71] (31c). In a sense, what dicot is all about is using neutral thirds and sixths and pretending that these are 5-limit, and like any temperament which seems to involve a lot of "pretending", dicot is close to the edge of what can be sensibly called a temperament at all. In other words, it is an exotemperament.
Dicot
Subgroup: 2.3.5
Comma list: 25/24
Mapping: [⟨1 1 2], ⟨0 2 1]]
- mapping generators: ~2, ~5/4
- CTE: ~2 = 1200.000, ~5/4 = 354.664
- error map: ⟨0.000 +7.374 -31.649]
- POTE: ~2 = 1200.000, ~6/5 = 348.594
- error map: ⟨0.000 -4.766 -37.719]
- 5-odd-limit diamond monotone: ~5/4 = [300.000, 400.000] (1\4 to 1\3)
- 5-odd-limit diamond tradeoff: ~5/4 = [315.641, 386.314] (full comma to untempered)
Optimal ET sequence: 3, 4, 7, 17, 24c, 31c
Badness (Smith): 0.013028
Overview to extensions
The second comma of the normal comma list defines which 7-limit family member we are looking at. Septimal dicot adds 36/35, sharpie adds 28/27, and dichotic adds 64/63, all retaining the same period and generator.
Decimal adds 49/48, sidi adds 245/243, and jamesbond adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator.
Temperaments discussed elsewhere are:
The rest are considered below.
2.3.5.11 subgroup
The 2.3.5.11-subgroup extension is related to septimal dicot, sharpie, and dichotic.
Subgroup: 2.3.5.11
Comma list: 25/24, 45/44
Sval mapping: [⟨1 1 2 2], ⟨0 2 1 5]]
Gencom mapping: [⟨1 1 2 0 2], ⟨0 2 1 0 5]]
- gencom: [2 5/4; 25/24 45/44]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 352.287
- POTE: ~2 = 1200.000, ~6/5 = 346.734
Optimal ET sequence: 3e, 4e, 7, 24c, 31c, 38cc, 45cce
RMS error: 5.621 cents
2.3.5.11.13 subgroup
Subgroup: 2.3.5.11.13
Comma list: 25/24, 40/39, 45/44
Sval mapping: [⟨1 1 2 2 4], ⟨0 2 1 5 -1]]
Gencom mapping: [⟨1 1 2 0 2 4], ⟨0 2 1 0 5 -1]]
- gencom: [2 5/4; 25/24 40/39 45/44]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 352.420
- POTE: ~2 = 1200.000, ~6/5 = 350.526
Optimal ET sequence: 3e, 7, 17, 24c
RMS error: 5.916 cents
Septimal dicot
Septimal dicot is the extension where 7/6 and 9/7 are also conflated into 5/4~6/5. Although 5/4~6/5 is a giant block already, 7/6 and 9/7 are often considered as thirds too. On that account one could argue for the canonicity of this extension, despite the relatively poor accuracy.
Subgroup: 2.3.5.7
Comma list: 15/14, 25/24
Mapping: [⟨1 1 2 2], ⟨0 2 1 3]]
- CTE: ~2 = 1200.000, ~6/5 = 342.257
- error map: ⟨0.000 -17.441 -44.056 +57.946]
- POTE: ~2 = 1200.000, ~6/5 = 336.381
- error map: ⟨0.000 -29.193 -49.933 +40.316]
Optimal ET sequence: 3d, 4, 7
Badness (Smith): 0.019935
11-limit
Subgroup: 2.3.5.7.11
Comma list: 15/14, 22/21, 25/24
Mapping: [⟨1 1 2 2 2], ⟨0 2 1 3 5]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~6/5 = 345.596
- POTE: ~2 = 1200.000, ~6/5 = 342.125
Optimal ET sequence: 3de, 4e, 7
Badness (Smith): 0.019854
Eudicot
Subgroup: 2.3.5.7.11
Comma list: 15/14, 25/24, 33/32
Mapping: [⟨1 1 2 2 4], ⟨0 2 1 3 -2]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~6/5 = 340.417
- POTE: ~2 = 1200.000, ~6/5 = 336.051
Optimal ET sequence: 3d, 4, 7, 18bc, 25bccd
Badness (Smith): 0.027114
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 15/14, 25/24, 33/32, 40/39
Mapping: [⟨1 1 2 2 4 4], ⟨0 2 1 3 -2 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~6/5 = 340.835
- POTE: ~2 = 1200.000, ~6/5 = 338.846
Badness (Smith): 0.023828
Flattie
This temperament used to be known as flat. Unlike septimal dicot where 7/6 is added to the neutral third, here 8/7 is added instead.
Subgroup: 2.3.5.7
Comma list: 21/20, 25/24
Mapping: [⟨1 1 2 3], ⟨0 2 1 -1]]
- CTE: ~2 = 1200.000, ~6/5 = 346.438
- error map: ⟨0.000 -9.080 -39.876 -115.264]
- POTE: ~2 = 1200.000, ~6/5 = 331.916
- error map: ⟨0.000 -38.123 -54.398 -100.742]
Optimal ET sequence: 3, 4, 7d, 11cd, 18bcddd
Badness (Smith): 0.025381
11-limit
Subgroup: 2.3.5.7.11
Comma list: 21/20, 25/24, 33/32
Mapping: [⟨1 1 2 3 4], ⟨0 2 1 -1 -2]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~6/5 = 343.139
- POTE: ~2 = 1200.000, ~6/5 = 337.532
Badness (Smith): 0.024988
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 14/13, 21/20, 25/24, 33/32
Mapping: [⟨1 1 2 3 4 4], ⟨0 2 1 -1 -2 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~6/5 = 343.655
- POTE: ~2 = 1200.000, ~6/5 = 341.023
Badness (Smith): 0.023420
Sharpie
This temperament used to be known as sharp. This is where you find 7/6 at the major second and 7/4 at the major sixth.
Subgroup: 2.3.5.7
Comma list: 25/24, 28/27
Mapping: [⟨1 1 2 1], ⟨0 2 1 6]]
- CTE: ~2 = 1200.000, ~5/4 = 359.564
- error map: ⟨0.000 +17.173 -26.750 -11.442]
- POTE: ~2 = 1200.000, ~5/4 = 357.938
- error map: ⟨0.000 +13.921 -28.376 -21.198]
Optimal ET sequence: 3d, 7d, 10
Badness (Smith): 0.028942
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 28/27, 35/33
Mapping: [⟨1 1 2 1 2], ⟨0 2 1 6 5]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 357.261
- POTE: ~2 = 1200.000, ~5/4 = 356.106
Optimal ET sequence: 3de, 7d, 10, 17d
Badness (Smith): 0.022366
Dichotic
In dichotic, 7/4 is found at a stack of two perfect fourths.
Subgroup: 2.3.5.7
Comma list: 25/24, 64/63
Mapping: [⟨1 1 2 4], ⟨0 2 1 -4]]
- CTE: ~2 = 1200.000, ~5/4 = 356.333
- error map: ⟨0.000 +10.710 -29.981 +5.844]
- POTE: ~2 = 1200.000, ~5/4 = 356.264
- error map: ⟨0.000 +10.573 -30.050 +6.119]
Optimal ET sequence: 3, 7, 10, 17, 27c
Badness (Smith): 0.037565
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 45/44, 64/63
Mapping: [⟨1 1 2 4 2], ⟨0 2 1 -4 5]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 354.183
- POTE: ~2 = 1200.000, ~5/4 = 354.262
Optimal ET sequence: 7, 10, 17
Badness (Smith): 0.030680
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 25/24, 40/39, 45/44, 64/63
Mapping: [⟨1 1 2 4 2 4], ⟨0 2 1 -4 5 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 354.247
- POTE: ~2 = 1200.000, ~5/4 = 354.365
Optimal ET sequence: 7, 10, 17, 27ce, 44cce
Badness (Smith): 0.021674
Dichotomic
Subgroup: 2.3.5.7.11
Comma list: 22/21, 25/24, 33/32
Mapping: [⟨1 1 2 4 4], ⟨0 2 1 -4 -2]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 353.751
- POTE: ~2 = 1200.000, ~5/4 = 354.073
Optimal ET sequence: 3, 7, 10e
Badness (Smith): 0.031719
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 22/21, 25/24, 33/32, 40/39
Mapping: [⟨1 1 2 4 4 4], ⟨0 2 1 -4 -2 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 353.850
- POTE: ~2 = 1200.000, ~5/4 = 354.313
Optimal ET sequence: 3, 7, 10e
Badness (Smith): 0.022741
Dichosis
Subgroup: 2.3.5.7.11
Comma list: 25/24, 35/33, 64/63
Mapping: [⟨1 1 2 4 5], ⟨0 2 1 -4 -5]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 361.081
- POTE: ~2 = 1200.000, ~5/4 = 360.659
Optimal ET sequence: 3, 7e, 10
Badness (Smith): 0.041361
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 25/24, 35/33, 40/39, 64/63
Mapping: [⟨1 1 2 4 5 4], ⟨0 2 1 -4 -5 -1]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~5/4 = 361.061
- POTE: ~2 = 1200.000, ~5/4 = 360.646
Optimal ET sequence: 3, 7e, 10
Badness (Smith): 0.027938
Decimal
Subgroup: 2.3.5.7
Comma list: 25/24, 49/48
Mapping: [⟨2 0 3 4], ⟨0 2 1 1]]
- mapping generators: ~7/5, ~7/4
- CTE: ~7/5 = 600.000, ~7/4 = 955.608 (~8/7 = 244.392)
- error map: ⟨0.000 +9.260 -30.706 -13.218]
- POTE: ~7/5 = 600.000, ~7/4 = 948.443 (~7/6 = 251.557)
- error map: ⟨0.000 -5.069 -37.871 -20.383]
Optimal ET sequence: 4, 10, 14c, 24c, 38ccd
Badness (Smith): 0.028334
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 45/44, 49/48
Mapping: [⟨2 0 3 4 -1], ⟨0 2 1 1 5]]
Optimal tunings:
- CTE: ~7/5 = 600.000, ~7/4 = 952.812 (~8/7 = 247.188)
- POTE: ~7/5 = 600.000, ~7/4 = 946.507 (~7/6 = 253.493)
Optimal ET sequence: 4e, 10, 14c, 24c
Badness (Smith): 0.026712
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 25/24, 45/44, 49/48, 91/90
Mapping: [⟨2 0 3 4 -1 1], ⟨0 2 1 1 5 4]]
Optimal tunings:
- CTE: ~7/5 = 600.000, ~7/4 = 954.469 (~8/7 = 245.531)
- POTE: ~7/5 = 600.000, ~7/4 = 947.955 (~7/6 = 252.045)
Optimal ET sequence: 4ef, 10, 14cf, 24cf
Badness (Smith): 0.021326
Decimated
Subgroup: 2.3.5.7.11
Comma list: 25/24, 33/32, 49/48
Mapping: [⟨2 0 3 4 10], ⟨0 2 1 1 -2]]
Optimal tunings:
- CTE: ~7/5 = 600.000, ~7/4 = 950.940 (~7/6 = 249.060)
- POTE: ~7/5 = 600.000, ~7/4 = 944.934 (~7/6 = 255.066)
Optimal ET sequence: 4, 10e, 14c
Badness (Smith): 0.031456
Decibel
Subgroup: 2.3.5.7.11
Comma list: 25/24, 35/33, 49/48
Mapping: [⟨2 0 3 4 7], ⟨0 2 1 1 0]]
Optimal tunings:
- CTE: ~7/5 = 600.000, ~7/4 = 955.608 (~8/7 = 244.392)
- POTE: ~7/5 = 600.000, ~7/4 = 956.507 (~8/7 = 243.493)
Badness (Smith): 0.032385
Sidi
Subgroup: 2.3.5.7
Comma list: 25/24, 245/243
Mapping: [⟨1 3 3 6], ⟨0 -4 -2 -9]]
- mapping generators: ~2, ~9/7
- CTE: ~2 = 1200.000, ~9/7 = 424.452
- error map: ⟨0.000 +0.238 -35.217 +11.108]
- POTE: ~2 = 1200.000, ~9/7 = 427.208
- error map: ⟨0.000 -10.789 -40.731 -13.702]
Optimal ET sequence: 3d, …, 11cd, 14c
Badness (Smith): 0.056586
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 45/44, 99/98
Mapping: [⟨1 3 3 6 7], ⟨0 -4 -2 -9 -10]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~9/7 = 424.587
- POTE: ~2 = 1200.000, ~9/7 = 427.273
Optimal ET sequence: 3de, …, 11cdee, 14c
Badness (Smith): 0.032957