List of 22et rank two temperaments by complexity
Jump to navigation
Jump to search
Below are listed rank-two temperaments supported by the 22edo patent val, below the indicated cutoff in TE badness.
5-limit temperaments with badness below 0.1
Listed is the wedgie and the TE complexity for six temperaments with badness less than 0.1.
Rank | Wedgie | Name | Complexity | Commas |
1 | <<3 5 1]] | Porcupine | 1.663 | 250/243 |
2 | <<2 -4 -11]] | Srutal | 2.121 | 2048/2025 |
3 | <<5 1 -10]] | Magic | 2.417 | 3125/3072 |
4 | <<7 -3 -21]] | Orson | 4.232 | 2109375/2097152 |
5 | <<9 -7 -32]] | Escapade | 6.243 | 4294967296/4271484375 |
6 | <<16 -10 -53]] | Kwazy | 10.454 | 9010162353515625/9007199254740992 |
7-limit temperaments with badness below 0.06
Listed is the wedgie and the TE complexity for 14 temperaments with badness less than 0.06.
Rank | Wedgie | Name | Complexity | Commas |
1 | <<2 -4 -4 -11 -12 2]] | Pajara | 1.953 | 50/49 64/63 |
2 | <<6 10 10 2 -1 -5]] | Hedgehog | 2.784 | 50/49 245/243 |
3 | <<3 5 -6 1 -18 -28]] | Porcupine | 2.819 | 64/63 250/243 |
4 | <<1 9 -2 12 -6 -30]] | Superpyth | 2.874 | 64/63 245/243 |
5 | <<8 6 6 -9 -13 -3]] | Doublewide | 2.928 | 50/49 875/864 |
6 | <<5 1 12 -10 5 25]] | Magic | 2.937 | 225/224 245/243 |
7 | <<3 5 16 1 17 23]] | Porky | 3.362 | 225/224 250/243 |
8 | <<7 -3 8 -21 -7 27]] | Orwell | 3.685 | 225/224 1728/1715 |
9 | <<4 -8 14 -22 11 55]] | Shrutar | 5.101 | 245/243 2048/2025 |
10 | <<6 -12 10 -33 -1 57]] | Echidna | 5.925 | 1728/1715 2048/2025 |
11 | <<12 -2 20 -31 -2 52]] | Wizard | 6.372 | 225/224 118098/117649 |
12 | <<11 -11 22 -43 4 82]] | Hendecatonic | 8.442 | 6144/6125 10976/10935 |
13 | <<18 -14 30 -64 -3 109]] | Septisuperfourth | 11.986 | 6144/6125 118098/117649 |
14 | <<23 -13 42 -74 2 134]] | Fifthplus | 14.679 | 65625/65536 420175/419904 |
11-limit temperaments with badness below 0.05
Listed is the wedgie and the TE complexity for 38 temperaments with badness less than 0.05.
Rank | Wedgie | Name | Complexity | Commas |
1 | <<6 10 10 8 2 -1 -8 -5 -16 -12]] | Hedgehog | 2.439 | 50/49 55/54 99/98 |
2 | <<3 5 -6 4 1 -18 -4 -28 -8 32]] | Porcupine | 2.478 | 55/54 64/63 100/99 |
3 | <<2 -4 -4 -12 -11 -12 -26 2 -14 -20]] | Pajara | 2.543 | 50/49 64/63 99/98 |
4 | <<2 -4 -4 10 -11 -12 9 2 37 42]] | Pajarous | 2.718 | 50/49 55/54 64/63 |
5 | <<5 1 12 14 -10 5 5 25 29 -2]] | Telepathy | 2.864 | 55/54 99/98 176/175 |
6 | <<1 9 -2 -6 12 -6 -13 -30 -45 -10]] | Suprapyth | 3.011 | 55/54 64/63 99/98 |
7 | <<3 5 16 4 1 17 -4 23 -8 -44]] | Porky | 3.020 | 55/54 100/99 225/224 |
8 | <<8 6 6 18 -9 -13 1 -3 21 30]] | Fleetwood | 3.081 | 50/49 55/54 176/175 |
9 | <<7 -3 8 2 -21 -7 -21 27 15 -22]] | Orwell | 3.242 | 99/98 121/120 176/175 |
10 | <<4 -8 -8 -2 -22 -24 -17 4 23 22]] | Hemipaj | 3.389 | 50/49 64/63 121/120 |
11 | <<8 6 6 -4 -9 -13 -34 -3 -30 -32]] | Doublewide | 3.407 | 50/49 99/98 875/864 |
12 | <<1 9 -2 16 12 -6 22 -30 6 52]] | Superpyth | 3.410 | 64/63 100/99 245/243 |
13 | <<1 -13 -2 -6 -23 -6 -13 32 31 -10]] | Quasisupra | 3.490 | 64/63 99/98 121/120 |
14 | <<10 2 2 6 -20 -25 -25 -1 7 10]] | Astrology | 3.575 | 50/49 121/120 176/175 |
15 | <<4 14 14 20 13 11 18 -7 -2 8]] | 3.637 | 50/49 99/98 2662/2625 | |
16 | <<5 1 -10 -8 -10 -30 -30 -26 -22 12]] | 3.686 | 64/63 100/99 605/588 | |
17 | <<5 1 12 -8 -10 5 -30 25 -22 -64]] | Magic | 3.715 | 100/99 225/224 245/243 |
18 | <<0 0 0 22 0 0 35 0 51 62]] | 4.028 | 50/49 64/63 245/243 | |
19 | <<4 -8 14 -2 -22 11 -17 55 23 -54]] | Shrutar | 4.530 | 121/120 176/175 245/243 |
20 | <<13 7 18 10 -19 -8 -29 22 -1 -34]] | 4.554 | 99/98 121/120 625/616 | |
21 | <<9 -7 4 -10 -32 -19 -47 29 1 -42]] | 5.075 | 99/98 176/175 2560/2541 | |
22 | <<10 2 24 6 -20 10 -25 50 7 -66]] | 5.271 | 121/120 225/224 245/243 | |
23 | <<2 -4 18 -12 -11 23 -26 53 -14 -96]] | 5.317 | 100/99 385/384 1232/1215 | |
24 | <<7 -3 8 -20 -21 -7 -56 27 -36 -84]] | 5.605 | 100/99 225/224 1728/1715 | |
25 | <<6 -12 10 -14 -33 -1 -43 57 9 -74]] | Echidna | 5.898 | 176/175 540/539 896/891 |
26 | <<12 -2 20 -6 -31 -2 -51 52 -7 -86]] | Wizard | 6.421 | 225/224 385/384 4000/3993 |
27 | <<11 -11 22 0 -43 4 -38 82 38 -76]] | 7.478 | 121/120 176/175 10976/10935 | |
28 | <<9 -7 26 -10 -32 16 -47 80 1 -118]] | 7.718 | 245/243 385/384 4000/3993 | |
29 | <<13 -15 18 -12 -54 -8 -64 84 24 -96]] | 8.886 | 176/175 540/539 16384/16335 | |
30 | <<11 -11 22 -22 -43 4 -73 82 -13 -138]] | 9.219 | 540/539 896/891 4375/4356 | |
31 | <<19 -5 28 -4 -52 -9 -72 79 8 -108]] | 9.470 | 225/224 385/384 43923/43750 | |
32 | <<16 -10 34 -8 -53 9 -68 107 16 -140]] | 10.578 | 385/384 3388/3375 9801/9800 | |
33 | <<18 -14 30 -20 -64 -3 -94 109 2 -160]] | Septisuperfourth | 12.086 | 540/539 4000/3993 5632/5625 |
34 | <<25 -17 38 -18 -85 -10 -115 136 17 -182]] | 15.106 | 540/539 5632/5625 35937/35840 | |
35 | <<28 -12 54 -14 -84 7 -119 159 9 -226]] | 16.904 | 385/384 9801/9800 456533/455625 | |
36 | <<30 -16 50 -26 -95 -5 -145 161 -5 -246]] | 18.435 | 540/539 4000/3993 65625/65536 | |
37 | <<34 -24 64 -28 -117 6 -162 216 18 -300]] | 22.572 | 5632/5625 9801/9800 41503/41472 | |
38 | <<46 -26 84 -34 -148 4 -213 268 11 -386]] | 28.911 | 9801/9800 41503/41472 65625/65536 |
13-limit temperaments with badness below 0.04
Listed is the wedgie and the TE complexity for 40 temperaments with badness less than 0.04.
Rank | Wedgie | Name | Complexity | Commas |
1 | <<6 10 10 8 12 2 -1 -8 -3 -5 -16 -9 -12 -3 12]] | Hedgehog | 2.196 | 50/49 55/54 65/63 99/98 |
2 | <<2 -4 -4 10 4 -11 -12 9 -1 2 37 24 42 26 -23]] | Pajarous | 2.481 | 50/49 55/54 64/63 65/63 |
3 | <<3 5 -6 4 -5 1 -18 -4 -19 -28 -8 -30 32 8 -32]] | Porkpie | 2.487 | 55/54 64/63 65/63 100/99 |
4 | <<2 -4 -4 -12 4 -11 -12 -26 -1 2 -14 24 -20 26 58]] | Pajara | 2.588 | 50/49 64/63 65/63 99/98 |
5 | <<8 6 6 18 16 -9 -13 1 -4 -3 21 15 30 23 -11]] | Fleetwood | 2.861 | 50/49 55/54 65/63 176/175 |
6 | <<7 -3 8 2 3 -21 -7 -21 -21 27 15 18 -22 -21 3]] | Blair | 2.911 | 65/64 78/77 91/90 99/98 |
7 | <<5 1 12 14 -1 -10 5 5 -20 25 29 -6 -2 -47 -55]] | Telepathy | 2.980 | 55/54 65/64 91/90 99/98 |
8 | <<3 5 16 4 17 1 17 -4 16 23 -8 21 -44 -11 44]] | 3.040 | 55/54 65/63 100/99 225/224 | |
9 | <<1 9 -2 -6 -9 12 -6 -13 -18 -30 -45 -54 -10 -18 -9]] | 3.151 | 55/54 64/63 65/63 364/363 | |
10 | <<2 -4 -4 -12 -18 -11 -12 -26 -36 2 -14 -27 -20 -36 -18]] | 3.161 | 50/49 64/63 99/98 975/968 | |
11 | <<1 -13 -2 -6 -9 -23 -6 -13 -18 32 31 27 -10 -18 -9]] | 3.168 | 64/63 78/77 91/90 121/120 | |
12 | <<5 1 12 14 21 -10 5 5 15 25 29 45 -2 15 21]] | 3.194 | 55/54 65/63 99/98 176/175 | |
13 | <<3 5 -6 4 17 1 -18 -4 16 -28 -8 21 32 70 44]] | 3.195 | 55/54 64/63 91/90 100/99 | |
14 | <<1 9 -2 16 13 12 -6 22 17 -30 6 -3 52 44 -14]] | 3.228 | 64/63 78/77 91/90 100/99 | |
15 | <<1 9 -2 -6 13 12 -6 -13 17 -30 -45 -3 -10 44 67]] | 3.234 | 55/54 64/63 91/90 99/98 | |
16 | <<5 1 -10 -8 -1 -10 -30 -30 -20 -26 -22 -6 12 34 26]] | 3.296 | 64/63 65/63 100/99 169/165 | |
17 | <<3 5 16 4 -5 1 17 -4 -19 23 -8 -30 -44 -73 -32]] | 3.380 | 55/54 65/64 91/90 100/99 | |
18 | <<5 1 12 -8 -1 -10 5 -30 -20 25 -22 -6 -64 -47 26]] | 3.413 | 65/64 78/77 91/90 100/99 | |
19 | <<0 0 0 0 22 0 0 0 35 0 0 51 0 62 76]] | 3.436 | 50/49 55/54 64/63 99/98 | |
20 | <<4 -8 -8 -2 -14 -22 -24 -17 -37 4 23 -3 22 -10 -41]] | 3.467 | 50/49 64/63 78/77 121/120 | |
21 | <<10 2 2 6 -2 -20 -25 -25 -40 -1 7 -12 10 -13 -29]] | 3.495 | 50/49 65/64 78/77 121/120 | |
22 | <<8 6 6 -4 -6 -9 -13 -34 -39 -3 -30 -36 -32 -39 -6]] | 3.603 | 50/49 78/77 99/98 875/864 | |
23 | <<6 10 10 8 -10 2 -1 -8 -38 -5 -16 -60 -12 -65 -64]] | 3.844 | 50/49 55/54 99/98 975/968 | |
24 | <<7 -3 8 2 -19 -21 -7 -21 -56 27 15 -33 -22 -83 -73]] | 4.717 | 99/98 121/120 176/175 275/273 | |
25 | <<4 -8 14 -2 -14 -22 11 -17 -37 55 23 -3 -54 -91 -41]] | 4.806 | 91/90 121/120 176/175 245/243 | |
26 | <<1 -13 -2 -6 -31 -23 -6 -13 -53 32 31 -24 -10 -80 -85]] | 5.065 | 64/63 99/98 121/120 275/273 | |
27 | <<9 -7 4 -10 -15 -32 -19 -47 -57 29 1 -9 -42 -57 -15]] | 5.170 | 78/77 99/98 176/175 507/500 | |
28 | <<10 2 24 6 -2 -20 10 -25 -40 50 7 -12 -66 -94 -29]] | 5.251 | 65/64 91/90 121/120 245/243 | |
29 | <<13 7 18 10 -7 -19 -8 -29 -59 22 -1 -42 -34 -86 -61]] | 5.337 | 65/64 99/98 121/120 275/273 | |
30 | <<5 1 12 -8 -23 -10 5 -30 -55 25 -22 -57 -64 -109 -50]] | 5.378 | 100/99 225/224 245/243 275/273 | |
31 | <<1 9 -2 16 35 12 -6 22 52 -30 6 48 52 106 62]] | 5.435 | 64/63 100/99 245/243 275/273 | |
32 | <<6 -12 10 -14 -32 -33 -1 -43 -73 57 9 -30 -74 -127 -59]] | 7.120 | 176/175 351/350 364/363 540/539 | |
33 | <<12 -2 20 -6 -20 -31 -2 -51 -76 52 -7 -39 -86 -130 -47]] | 7.303 | 225/224 351/350 364/363 385/384 | |
34 | <<9 -7 26 -10 -37 -32 16 -47 -92 80 1 -60 -118 -200 -91]] | 9.701 | 245/243 352/351 385/384 625/624 | |
35 | <<12 -2 20 -6 -42 -31 -2 -51 -111 52 -7 -90 -86 -192 -123]] | 9.808 | 225/224 275/273 385/384 4000/3993 | |
36 | <<13 -15 18 -12 -51 -54 -8 -64 -129 84 24 -63 -96 -210 -132]] | 11.639 | 176/175 351/350 540/539 33275/33124 | |
37 | <<19 -5 28 -4 -39 -52 -9 -72 -132 79 8 -72 -108 -213 -120]] | 11.812 | 225/224 351/350 385/384 10648/10647 | |
38 | <<11 -11 22 -22 -55 -43 4 -73 -128 82 -13 -87 -138 -236 -109]] | 12.215 | 352/351 364/363 540/539 625/624 | |
39 | <<16 -10 34 -8 -56 -53 9 -68 -148 107 16 -93 -140 -283 -164]] | 14.161 | 352/351 385/384 625/624 4459/4455 | |
40 | <<18 -14 30 -20 -52 -64 -3 -94 -149 109 2 -69 -160 -257 -106]] | 14.257 | 351/350 364/363 540/539 4096/4095 |