Jubilismic family
The jubilismic family contains temperaments that temper out the jubilisma (50/49) (also called tritonic diesis, or septimal sixth-tone). It therefore identifies the two septimal tritones 7/5 and 10/7, an identification familiar from 12edo. While most rank-three temperaments are planar, a jubilismic temperament divides the octave in two.
Jubilismic
Subgroup: 2.3.5.7
Comma list: 50/49
Mapping: [⟨2 0 0 1], ⟨0 1 0 0], ⟨0 0 1 1]]
- mapping generators: ~7/5, ~3, ~5
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 702.9804, ~5/4 = 380.8399
- 7- and 9-odd-limit
- [[1 0 0 0⟩, [0 1 0 0⟩, [-1/4 0 1/2 1/2⟩, [1/4 0 1/2 1/2⟩]
- eigenmonzo (unchanged-interval) basis: 2.3.35
Optimal ET sequence: 4, 8d, 10, 12, 22, 34d, 48
Scales: jubilismic10, jubilismic12
Jubilee
Subgroup: 2.3.5.7.11
Comma list: 50/49, 99/98
Mapping: [⟨2 0 0 1 4], ⟨0 1 0 0 -2], ⟨0 0 1 1 2]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 703.4155, ~5/4 = 380.6973
Optimal ET sequence: 4, 8d, 10e, 12, 22, 34d, 48
Badness: 0.600 × 10-3
Festival
Subgroup: 2.3.5.7.11
Comma list: 45/44, 50/49
Mapping: [⟨2 0 0 1 -4], ⟨0 1 0 0 2], ⟨0 0 1 1 1]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 693.6257, ~5/4 = 371.2658
Optimal ET sequence: 10, 12, 22e, 26
Badness: 0.689 × 10-3
Fiesta
Subgroup: 2.3.5.7.11
Comma list: 50/49, 56/55
Mapping: [⟨2 0 0 1 7], ⟨0 1 0 0 0], ⟨0 0 1 1 0]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 713.5853, ~5/4 = 397.6952
Optimal ET sequence: 8d, 10, 12, 22e
Badness: 0.717 × 10-3
Jamboree
Subgroup: 2.3.5.7.11
Comma list: 50/49, 55/54
Mapping: [⟨2 0 0 1 2], ⟨0 1 0 0 3], ⟨0 0 1 1 -1]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 706.6559, ~5/4 = 376.8308
Optimal ET sequence: 8d, 10, 12e, 14c, 22
Badness: 0.781 × 10-3