Jubilismic clan
The jubilismic clan tempers out the jubilisma, 50/49, which means 7/5 and 10/7 are identified and the octave is divided in two.
Doublewide, lemba and diminished are discussed below; others in the clan are pajara, decimal, injera, octokaidecal, hedgehog, bipelog, dubbla, hexe and astrology, which are discussed elsewhere.
No-three jubilismic
Subgroup: 2.5.7
Sval mapping: [⟨2 0 1], ⟨0 1 1]]
Sval mapping generators: ~7/5, ~5
Gencom mapping: [⟨2 0 0 1], ⟨0 0 1 1]]
POTE generator: ~5/4 = 380.840
Optimal GPV sequence: 2, 4, 6, 16, 22, 60d, 82d, 104dd
Lemba
- Main article: Lemba
Subgroup: 2.3.5.7
Comma list: 50/49, 525/512
Mapping: [⟨2 2 5 6], ⟨0 3 -1 -1]]
Mapping generators: ~7/5, ~8/7
POTE generator: ~8/7 = 232.089
Optimal GPV sequence: 10, 16, 26, 62c
Badness: 0.062208
11-limit
Subgroup: 2.3.5.7.11
Comma list: 45/44, 50/49, 385/384
Mapping: [⟨2 2 5 6 5], ⟨0 3 -1 -1 5]]
POTE generator: ~8/7 = 230.974
Optimal GPV sequence: 10, 16, 26
Badness: 0.041563
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 50/49, 65/64, 78/77
Mapping: [⟨2 2 5 6 5 7], ⟨0 3 -1 -1 5 1]]
POTE generator: ~8/7 = 230.966
Optimal GPV sequence: 10, 16, 26
Badness: 0.025477
Diminished
- See also: Dimipent family #Diminished
Subgroup: 2.3.5.7
Comma list: 36/35, 50/49
Mapping: [⟨4 0 3 5], ⟨0 1 1 1]]
Mapping generators: ~6/5, ~3
POTE generator: ~3/2 = 699.523
Optimal GPV sequence: 4, 8d, 12
Badness: 0.022401
Scales: diminished12
11-limit
Subgroup: 2.3.5.7.11
Comma list: 36/35, 50/49, 56/55
Mapping: [⟨4 0 3 5 14], ⟨0 1 1 1 0]]
Mapping generators: ~6/5, ~3
POTE generator: ~3/2 = 709.109
Optimal GPV sequence: 4, 8d, 12, 32cddee, 44cddeee
Badness: 0.022132
Scales: diminished12
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 36/35, 40/39, 50/49, 66/65
Mapping: [⟨4 0 3 5 14 15], ⟨0 1 1 1 0 0]]
Mapping generators: ~6/5, ~3
POTE generator: ~3/2 = 713.773
Optimal GPV sequence: 4, 8d, 12f, 20cdef
Badness: 0.019509
Scales: diminished12
Demolished
Subgroup: 2.3.5.7.11
Comma list: 36/35, 45/44, 50/49
Mapping: [⟨4 0 3 5 -5], ⟨0 1 1 1 3]]
Mapping generators: ~6/5, ~3
POTE generator: ~3/2 = 689.881
Optimal GPV sequence: 12, 28, 40de
Badness: 0.026574
Cohedim
This temperament has been documented in Graham Breed's temperament finder as hemidim, the same name as 11-limit 4e&24 and 13-limit 4ef&24. For 11-limit 8bce&12 temperament, cohedim arguably makes more sense.
Subgroup: 2.3.5.7.11
Comma list: 36/35, 50/49, 125/121
Mapping: [⟨4 1 4 6 6], ⟨0 2 2 2 3]]
Mapping generators: ~6/5, ~11/7
POTE generator: ~12/11 = 101.679
Optimal GPV sequence: 8bce, 12
Badness: 0.054965
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 36/35, 50/49, 66/65, 125/121
Mapping: [⟨4 1 4 6 6 7], ⟨0 2 2 2 3 3]]
POTE generator: ~12/11 = 102.299
Optimal GPV sequence: 8bcef, 12f
Badness: 0.041707
Doublewide
Subgroup: 2.3.5.7
Comma list: 50/49, 875/864
Mapping: [⟨2 1 3 4], ⟨0 4 3 3]]
POTE generator: ~6/5 = 325.719
Optimal GPV sequence: 4, 14bd, 18, 22, 48, 70c
Badness: 0.043462
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 99/98, 875/864
Mapping: [⟨2 1 3 4 8], ⟨0 4 3 3 -2]]
POTE generator: ~6/5 = 325.545
Optimal GPV sequence: 4, 14bd, 18, 22, 48, 70c, 118cd
Badness: 0.032058
Fleetwood
Subgroup: 2.3.5.7.11
Comma list: 50/49, 55/54, 176/175
Mapping: [⟨2 1 3 4 2], ⟨0 4 3 3 9]]
POTE generator: ~6/5 = 327.038
Optimal GPV sequence: 4e, 18e, 22
Badness: 0.035202
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 55/54, 65/63, 176/175
Mapping: [⟨2 1 3 4 2 3], ⟨0 4 3 3 9 8]]
POTE generator: ~6/5 = 327.841
Optimal GPV sequence: 4ef, 18e, 22, 84bddf
Badness: 0.031835
Cavalier
Subgroup: 2.3.5.7.11
Comma list: 45/44, 50/49, 875/864
Mapping: [⟨2 1 3 4 1], ⟨0 4 3 3 11]]
POTE generator: ~6/5 = 323.427
Badness: 0.052899
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 50/49, 78/77, 325/324
Mapping: [⟨2 1 3 4 1 2], ⟨0 4 3 3 11 10]]
POTE generator: ~6/5 = 323.396
Optimal GPV sequence: 22ef, 26
Badness: 0.035040
Elvis
- For the 5-limit version of this temperament, see High badness temperaments #Elvis.
Subgroup: 2.3.5.7
Comma list: 50/49, 8505/8192
Mapping: [⟨2 1 10 11], ⟨0 2 -5 -5]]
Wedgie: ⟨⟨4 -10 -10 -25 -27 5]]
POTE generator: ~45/32 = 553.721
Optimal GPV sequence: 2, 24c, 26
Badness: 0.141473
11-limit
Subgroup: 2.3.5.7.11
Comma list: 45/44, 50/49, 1344/1331
Mapping: [⟨2 1 10 11 8], ⟨0 2 -5 -5 -1]]
POTE generator: ~11/8 = 553.882
Optimal GPV sequence: 2, 24c, 26
Badness: 0.063212
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 50/49, 78/77, 1053/1024
Mapping: [⟨2 1 10 11 8 16], ⟨0 2 -5 -5 -1 -8]]
POTE generator: ~11/8 = 553.892
Optimal GPV sequence: 2f, 24cf, 26
Badness: 0.043997
Crepuscular
- See also: Fifive family #Crepuscular
Subgroup: 2.3.5.7
Comma list: 50/49, 4375/4374
Mapping: [⟨2 2 3 4], ⟨0 5 7 7]]
Wedgie: ⟨⟨10 14 14 -1 -6 -7]]
POTE generator: ~27/25 = 140.349
Optimal GPV sequence: 8d, 26, 34d, 60d
Badness: 0.086669
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 99/98, 864/847
Mapping: [⟨2 2 3 4 6], ⟨0 5 7 7 4]]
POTE generator: ~12/11 = 140.587
Optimal GPV sequence: 8d, 26, 34d, 60d
Badness: 0.040758
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 78/77, 99/98, 144/143
Mapping: [⟨2 2 3 4 6 6], ⟨0 5 7 7 4 6]]
POTE generator: ~12/11 = 140.554
Optimal GPV sequence: 8d, 26, 34d, 60d
Badness: 0.024368
Comic
- For the 5-limit version of this temperament, see High badness temperaments #Comic.
Subgroup: 2.3.5.7
Comma list: 50/49, 2240/2187
Mapping: [⟨2 1 -3 -2], ⟨0 2 7 7]]
Wedgie: ⟨⟨4 14 14 13 11 -7]]
POTE generator: ~81/80 = 54.699
Optimal GPV sequence: 20cd, 22
Badness: 0.084395
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 99/98, 2662/2625
Mapping: [⟨2 1 -3 -2 -4], ⟨0 2 7 7 10]]
POTE generator: ~81/80 = 55.184
Optimal GPV sequence: 20cde, 22
Badness: 0.045052
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 65/63, 99/98, 968/945
Mapping: [⟨2 1 -3 -2 -4 3], ⟨0 2 7 7 10 4]]
POTE generator: ~81/80 = 54.435
Optimal GPV sequence: 22
Badness: 0.041470
Bipyth
- See also: Archytas clan #Superpyth
Subgroup: 2.3.5.7
Comma list: 50/49, 20480/19683
Mapping: [⟨2 0 -24 -23], ⟨0 1 9 9]]
Wedgie: ⟨⟨2 18 18 24 23 -9]]
POTE generator: ~3/2 = 709.437
Optimal GPV sequence: 10cd, 12cd, 22
Badness: 0.165033
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 121/120, 896/891
Mapping: [⟨2 0 -24 -23 -9], ⟨0 1 9 9 5]]
POTE generator: ~3/2 = 709.310
Optimal GPV sequence: 10cd, 12cde, 22
Badness: 0.070910
Sedecic
Subgroup: 2.3.5.7
Comma list: 50/49, 546875/524288
Mapping: [⟨16 0 37 45], ⟨0 1 0 0]]
Wedgie: ⟨⟨16 0 0 -37 -45 0]]
POTE generator: ~3/2 = 700.554
Optimal GPV sequence: 16, 32, 48
Badness: 0.265972
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 385/384, 1331/1323
Mapping: [⟨16 0 37 45 30], ⟨0 1 0 0 1]]
POTE generator: ~3/2 = 700.331
Optimal GPV sequence: 16, 32, 48
Badness: 0.092774
Duodecim
- See also: Compton family #Duodecim
Subgroup: 2.3.5.7.11
Comma list: 36/35, 50/49, 64/63
Mapping: [⟨12 19 28 34 0], ⟨0 0 0 0 1]]
POTE generator: ~11/8 = 565.023
Optimal GPV sequence: 12, 24d, 36d
Badness: 0.030536
Vigintiduo
Subgroup: 2.3.5.7.11
Comma list: 50/49, 64/63, 245/243
Mapping: [⟨22 35 51 62 0], ⟨0 0 0 0 1]]
POTE generator: ~11/8 = 557.563
Optimal GPV sequence: 22, 66de, 88bde, 110bd, 198bcdde
Badness: 0.048372
Vigin
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 55/54, 64/63, 99/98
Mapping: [⟨22 35 51 62 76 0], ⟨0 0 0 0 0 1]]
POTE generator: ~13/8 = 844.624
Badness: 0.029849