# 607edo

 ← 606edo 607edo 608edo →
Prime factorization 607 (prime)
Step size 1.97694¢
Fifth 355\607 (701.812¢)
Semitones (A1:m2) 57:46 (112.7¢ : 90.94¢)
Consistency limit 9
Distinct consistency limit 9

607 equal divisions of the octave (abbreviated 607edo or 607ed2), also called 607-tone equal temperament (607tet) or 607 equal temperament (607et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 607 equal parts of about 1.98 ¢ each. Each step represents a frequency ratio of 21/607, or the 607th root of 2.

## Theory

607edo is consistent to the 9-odd-limit. Using the patent val, the equal temperament tempers out 32805/32768, 420175/419904 and 244140625/243045684 in the 7-limit; 3025/3024, 6250/6237, 32805/32768 and 420175/419904 in the 11-limit. It supports countertertiaschis. Essentially tempered chords available in 607et include baladismic chords and xenismic chords.

### Prime harmonics

Approximation of prime harmonics in 607edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.143 -0.811 -0.127 +0.247 -0.330 -0.178 -0.973 +0.391 +0.406 -0.390
Relative (%) +0.0 -7.2 -41.0 -6.4 +12.5 -16.7 -9.0 -49.2 +19.8 +20.6 -19.7
Steps
(reduced)
607
(0)
962
(355)
1409
(195)
1704
(490)
2100
(279)
2246
(425)
2481
(53)
2578
(150)
2746
(318)
2949
(521)
3007
(579)

### Subsets and supersets

607edo is the 111th prime EDO.

## Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-962 607 [607 962]] 0.0451 0.0451 2.28
2.3.5 32805/32768, [-58 -63 68 [607 962 1409]] 0.1465 0.1481 7.49
2.3.5.7 32805/32768, 420175/419904, 244140625/243045684 [607 962 1409 1704]] 0.1212 0.1355 6.85
2.3.5.7.11 3025/3024, 6250/6237, 32805/32768, 420175/419904 [607 962 1409 1704 2100]] 0.0827 0.1437 7.27
2.3.5.7.11.13 2080/2079, 625/624, 3025/3024, 78975/78848, 218700/218491 [607 962 1409 1704 2100 2246]] 0.0838 0.1312 6.64
2.3.5.7.11.13.17 2080/2079, 625/624, 1225/1224, 3025/3024, 78975/78848, 5832/5831 [607 962 1409 1704 2100 2246 2481]] 0.0780 0.1222 6.18

### Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 252\607 498.188 4/3 Helmholtz

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct