2964edo
Jump to navigation
Jump to search
Prime factorization
22 × 3 × 13 × 19
Step size
0.404858¢
Fifth
1734\2964 (702.024¢) (→289\494)
Semitones (A1:m2)
282:222 (114.2¢ : 89.88¢)
Consistency limit
7
Distinct consistency limit
7
← 2963edo | 2964edo | 2965edo → |
The 2964 equal divisions of the octave (2964edo), or the 2964(-tone) equal temperament (2964tet, 2964et) when viewed from a regular temperament perspective, divides the octave into 2964 equal parts of about 0.4048583 cents each.
Theory
In the 13-limit, 2964edo shares the same patent val than 494edo excepting for the 7th harmonic, which is corrected in an extremely precise way (absolute error 0.00000446 cents, relative error 0.0011%).
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.000 | +0.069 | -0.079 | +0.000 | +0.099 | -0.042 | -0.097 | +0.058 | +0.066 | -0.023 | -0.096 |
relative (%) | +0 | +17 | -19 | +0 | +24 | -10 | -24 | +14 | +16 | -6 | -24 | |
Steps (reduced) |
2964 (0) |
4698 (1734) |
6882 (954) |
8321 (2393) |
10254 (1362) |
10968 (2076) |
12115 (259) |
12591 (735) |
13408 (1552) |
14399 (2543) |
14684 (2828) |
Miscellaneous properties
Since 2964 = 6 × 494, 2964edo contains 494edo as a subset.