2964edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 2963edo2964edo2965edo →
Prime factorization 22 × 3 × 13 × 19
Step size 0.404858¢
Fifth 1734\2964 (702.024¢) (→289\494)
Semitones (A1:m2) 282:222 (114.2¢ : 89.88¢)
Consistency limit 7
Distinct consistency limit 7

The 2964 equal divisions of the octave (2964edo), or the 2964(-tone) equal temperament (2964tet, 2964et) when viewed from a regular temperament perspective, divides the octave into 2964 equal parts of about 0.4048583 cents each.

Theory

In the 13-limit, 2964edo shares the same patent val than 494edo excepting for the 7th harmonic, which is corrected in an extremely precise way (absolute error 0.00000446 cents, relative error 0.0011%).

Prime harmonics

Approximation of prime harmonics in 2964edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.000 +0.069 -0.079 +0.000 +0.099 -0.042 -0.097 +0.058 +0.066 -0.023 -0.096
relative (%) +0 +17 -19 +0 +24 -10 -24 +14 +16 -6 -24
Steps
(reduced)
2964
(0)
4698
(1734)
6882
(954)
8321
(2393)
10254
(1362)
10968
(2076)
12115
(259)
12591
(735)
13408
(1552)
14399
(2543)
14684
(2828)

Miscellaneous properties

Since 2964 = 6 × 494, 2964edo contains 494edo as a subset.