209edt
← 208edt | 209edt | 210edt → |
209 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 209edt or 209ed3), is a nonoctave tuning system that divides the interval of 3/1 into 209 equal parts of about 9.1 ¢ each. Each step represents a frequency ratio of 31/209, or the 209th root of 3.
Since 209 factors into 11 × 19, 209edt has 11edt and 19edt as subsets; it inherits its mapping of the 11th harmonic from the former and the 17th (along with the octave, corresponding to 19edt being a close octave stretch of 12edo) from the latter. It otherwise represents a very strong system in the 19-limit (even including prime 2), being the sum of 78edt which has a flat tendency in the 19-limit and 131edt which has a slight sharp tendency. Its most accurate simple intervals are 7/5, 11/5, and 17/9, all of which it approximates to within about 0.1 cents.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 9.1 | |
2 | 18.201 | |
3 | 27.301 | 63/62, 66/65 |
4 | 36.401 | 47/46 |
5 | 45.501 | 38/37, 39/38 |
6 | 54.602 | 65/63 |
7 | 63.702 | 28/27 |
8 | 72.802 | 49/47 |
9 | 81.902 | 65/62 |
10 | 91.003 | 39/37 |
11 | 100.103 | |
12 | 109.203 | 33/31, 49/46 |
13 | 118.303 | |
14 | 127.404 | 14/13 |
15 | 136.504 | |
16 | 145.604 | 37/34, 62/57 |
17 | 154.704 | |
18 | 163.805 | |
19 | 172.905 | 21/19 |
20 | 182.005 | 10/9 |
21 | 191.106 | 48/43 |
22 | 200.206 | 46/41, 55/49 |
23 | 209.306 | 35/31, 44/39 |
24 | 218.406 | 42/37 |
25 | 227.507 | 57/50, 65/57 |
26 | 236.607 | 39/34, 47/41 |
27 | 245.707 | |
28 | 254.807 | 22/19, 51/44 |
29 | 263.908 | |
30 | 273.008 | 41/35, 55/47 |
31 | 282.108 | 20/17 |
32 | 291.208 | |
33 | 300.309 | 44/37 |
34 | 309.409 | 49/41, 55/46 |
35 | 318.509 | |
36 | 327.609 | 29/24 |
37 | 336.71 | 17/14 |
38 | 345.81 | |
39 | 354.91 | 27/22, 70/57 |
40 | 364.011 | 37/30 |
41 | 373.111 | 31/25 |
42 | 382.211 | |
43 | 391.311 | |
44 | 400.412 | 63/50 |
45 | 409.512 | 19/15 |
46 | 418.612 | |
47 | 427.712 | |
48 | 436.813 | |
49 | 445.913 | 22/17 |
50 | 455.013 | 13/10 |
51 | 464.113 | 17/13 |
52 | 473.214 | 46/35 |
53 | 482.314 | 37/28 |
54 | 491.414 | |
55 | 500.514 | |
56 | 509.615 | 47/35, 51/38, 55/41 |
57 | 518.715 | 27/20, 58/43 |
58 | 527.815 | 19/14 |
59 | 536.916 | 15/11 |
60 | 546.016 | 37/27 |
61 | 555.116 | 51/37, 62/45 |
62 | 564.216 | 18/13 |
63 | 573.317 | 39/28 |
64 | 582.417 | 7/5 |
65 | 591.517 | 38/27 |
66 | 600.617 | |
67 | 609.718 | |
68 | 618.818 | |
69 | 627.918 | |
70 | 637.018 | 13/9 |
71 | 646.119 | 45/31 |
72 | 655.219 | 54/37 |
73 | 664.319 | 69/47 |
74 | 673.419 | 31/21 |
75 | 682.52 | 43/29, 46/31 |
76 | 691.62 | |
77 | 700.72 | |
78 | 709.821 | |
79 | 718.921 | 50/33 |
80 | 728.021 | |
81 | 737.121 | |
82 | 746.222 | 20/13 |
83 | 755.322 | 65/42 |
84 | 764.422 | 14/9 |
85 | 773.522 | |
86 | 782.623 | 11/7 |
87 | 791.723 | 30/19, 49/31 |
88 | 800.823 | 27/17 |
89 | 809.923 | |
90 | 819.024 | |
91 | 828.124 | 50/31 |
92 | 837.224 | 60/37 |
93 | 846.324 | 44/27 |
94 | 855.425 | 41/25 |
95 | 864.525 | 28/17 |
96 | 873.625 | |
97 | 882.726 | |
98 | 891.826 | 72/43 |
99 | 900.926 | 37/22, 69/41 |
100 | 910.026 | 22/13 |
101 | 919.127 | 17/10 |
102 | 928.227 | |
103 | 937.327 | |
104 | 946.427 | 19/11 |
105 | 955.528 | 33/19 |
106 | 964.628 | |
107 | 973.728 | |
108 | 982.828 | 30/17 |
109 | 991.929 | 39/22, 55/31 |
110 | 1001.029 | 41/23, 66/37 |
111 | 1010.129 | 43/24, 52/29 |
112 | 1019.229 | |
113 | 1028.33 | |
114 | 1037.43 | 51/28 |
115 | 1046.53 | |
116 | 1055.631 | 46/25 |
117 | 1064.731 | 37/20 |
118 | 1073.831 | |
119 | 1082.931 | |
120 | 1092.032 | 47/25, 62/33 |
121 | 1101.132 | 17/9 |
122 | 1110.232 | 19/10 |
123 | 1119.332 | 21/11 |
124 | 1128.433 | |
125 | 1137.533 | 27/14 |
126 | 1146.633 | |
127 | 1155.733 | 39/20 |
128 | 1164.834 | 49/25 |
129 | 1173.934 | 65/33 |
130 | 1183.034 | |
131 | 1192.134 | |
132 | 1201.235 | |
133 | 1210.335 | |
134 | 1219.435 | |
135 | 1228.536 | 63/31 |
136 | 1237.636 | 47/23 |
137 | 1246.736 | 37/18 |
138 | 1255.836 | 31/15 |
139 | 1264.937 | 27/13 |
140 | 1274.037 | |
141 | 1283.137 | |
142 | 1292.237 | |
143 | 1301.338 | 70/33 |
144 | 1310.438 | |
145 | 1319.538 | 15/7 |
146 | 1328.638 | 28/13 |
147 | 1337.739 | 13/6 |
148 | 1346.839 | 37/17 |
149 | 1355.939 | |
150 | 1365.039 | 11/5 |
151 | 1374.14 | 42/19 |
152 | 1383.24 | 20/9 |
153 | 1392.34 | 38/17 |
154 | 1401.441 | |
155 | 1410.541 | 70/31 |
156 | 1419.641 | |
157 | 1428.741 | |
158 | 1437.842 | 39/17 |
159 | 1446.942 | 30/13 |
160 | 1456.042 | 51/22 |
161 | 1465.142 | |
162 | 1474.243 | |
163 | 1483.343 | |
164 | 1492.443 | 45/19 |
165 | 1501.543 | 50/21 |
166 | 1510.644 | |
167 | 1519.744 | |
168 | 1528.844 | |
169 | 1537.944 | |
170 | 1547.045 | 22/9 |
171 | 1556.145 | |
172 | 1565.245 | 42/17 |
173 | 1574.346 | 72/29 |
174 | 1583.446 | |
175 | 1592.546 | |
176 | 1601.646 | |
177 | 1610.747 | |
178 | 1619.847 | 51/20 |
179 | 1628.947 | |
180 | 1638.047 | |
181 | 1647.148 | 44/17, 57/22 |
182 | 1656.248 | |
183 | 1665.348 | 34/13 |
184 | 1674.448 | 50/19 |
185 | 1683.549 | 37/14 |
186 | 1692.649 | |
187 | 1701.749 | |
188 | 1710.849 | 43/16 |
189 | 1719.95 | 27/10 |
190 | 1729.05 | 19/7 |
191 | 1738.15 | |
192 | 1747.251 | |
193 | 1756.351 | |
194 | 1765.451 | |
195 | 1774.551 | 39/14 |
196 | 1783.652 | |
197 | 1792.752 | 31/11 |
198 | 1801.852 | |
199 | 1810.952 | 37/13 |
200 | 1820.053 | |
201 | 1829.153 | |
202 | 1838.253 | |
203 | 1847.353 | |
204 | 1856.454 | 38/13 |
205 | 1865.554 | |
206 | 1874.654 | 62/21, 65/22 |
207 | 1883.754 | |
208 | 1892.855 | |
209 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.23 | +0.00 | -1.63 | -1.73 | -1.60 | +0.40 | +0.09 | -1.37 | -4.52 |
Relative (%) | +13.6 | +0.0 | -17.9 | -19.0 | -17.6 | +4.4 | +0.9 | -15.0 | -49.6 | |
Steps (reduced) |
132 (132) |
209 (0) |
306 (97) |
370 (161) |
456 (38) |
488 (70) |
539 (121) |
560 (142) |
596 (178) |
Harmonic | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.27 | +0.00 | +3.69 | -2.56 | -1.60 | -3.36 | +0.54 | +0.40 | -4.28 | +4.27 | -1.63 |
Relative (%) | -35.9 | +0.0 | +40.6 | -28.2 | -17.6 | -36.9 | +5.9 | +4.4 | -47.0 | +46.9 | -17.9 | |
Steps (reduced) |
612 (194) |
627 (0) |
641 (14) |
653 (26) |
665 (38) |
676 (49) |
687 (60) |
697 (70) |
706 (79) |
716 (89) |
724 (97) |