209edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 208edt209edt210edt →
Prime factorization 11 × 19
Step size 9.10026¢ 
Octave 132\209edt (1201.23¢) (→12\19edt)
Consistency limit 7
Distinct consistency limit 7

209 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 209edt or 209ed3), is a nonoctave tuning system that divides the interval of 3/1 into 209 equal parts of about 9.1 ¢ each. Each step represents a frequency ratio of 31/209, or the 209th root of 3.

Since 209 factors into 11 × 19, 209edt has 11edt and 19edt as subsets; it inherits its mapping of the 11th harmonic from the former and the 17th (along with the octave, corresponding to 19edt being a close octave stretch of 12edo) from the latter. It otherwise represents a very strong system in the 19-limit (even including prime 2), being the sum of 78edt which has a flat tendency in the 19-limit and 131edt which has a slight sharp tendency. Its most accurate simple intervals are 7/5, 11/5, and 17/9, all of which it approximates to within about 0.1 cents.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 9.1
2 18.201
3 27.301 63/62, 66/65
4 36.401 47/46
5 45.501 38/37, 39/38
6 54.602 65/63
7 63.702 28/27
8 72.802 49/47
9 81.902 65/62
10 91.003 39/37
11 100.103
12 109.203 33/31, 49/46
13 118.303
14 127.404 14/13
15 136.504
16 145.604 37/34, 62/57
17 154.704
18 163.805
19 172.905 21/19
20 182.005 10/9
21 191.106 48/43
22 200.206 46/41, 55/49
23 209.306 35/31, 44/39
24 218.406 42/37
25 227.507 57/50, 65/57
26 236.607 39/34, 47/41
27 245.707
28 254.807 22/19, 51/44
29 263.908
30 273.008 41/35, 55/47
31 282.108 20/17
32 291.208
33 300.309 44/37
34 309.409 49/41, 55/46
35 318.509
36 327.609 29/24
37 336.71 17/14
38 345.81
39 354.91 27/22, 70/57
40 364.011 37/30
41 373.111 31/25
42 382.211
43 391.311
44 400.412 63/50
45 409.512 19/15
46 418.612
47 427.712
48 436.813
49 445.913 22/17
50 455.013 13/10
51 464.113 17/13
52 473.214 46/35
53 482.314 37/28
54 491.414
55 500.514
56 509.615 47/35, 51/38, 55/41
57 518.715 27/20, 58/43
58 527.815 19/14
59 536.916 15/11
60 546.016 37/27
61 555.116 51/37, 62/45
62 564.216 18/13
63 573.317 39/28
64 582.417 7/5
65 591.517 38/27
66 600.617
67 609.718
68 618.818
69 627.918
70 637.018 13/9
71 646.119 45/31
72 655.219 54/37
73 664.319 69/47
74 673.419 31/21
75 682.52 43/29, 46/31
76 691.62
77 700.72
78 709.821
79 718.921 50/33
80 728.021
81 737.121
82 746.222 20/13
83 755.322 65/42
84 764.422 14/9
85 773.522
86 782.623 11/7
87 791.723 30/19, 49/31
88 800.823 27/17
89 809.923
90 819.024
91 828.124 50/31
92 837.224 60/37
93 846.324 44/27
94 855.425 41/25
95 864.525 28/17
96 873.625
97 882.726
98 891.826 72/43
99 900.926 37/22, 69/41
100 910.026 22/13
101 919.127 17/10
102 928.227
103 937.327
104 946.427 19/11
105 955.528 33/19
106 964.628
107 973.728
108 982.828 30/17
109 991.929 39/22, 55/31
110 1001.029 41/23, 66/37
111 1010.129 43/24, 52/29
112 1019.229
113 1028.33
114 1037.43 51/28
115 1046.53
116 1055.631 46/25
117 1064.731 37/20
118 1073.831
119 1082.931
120 1092.032 47/25, 62/33
121 1101.132 17/9
122 1110.232 19/10
123 1119.332 21/11
124 1128.433
125 1137.533 27/14
126 1146.633
127 1155.733 39/20
128 1164.834 49/25
129 1173.934 65/33
130 1183.034
131 1192.134
132 1201.235
133 1210.335
134 1219.435
135 1228.536 63/31
136 1237.636 47/23
137 1246.736 37/18
138 1255.836 31/15
139 1264.937 27/13
140 1274.037
141 1283.137
142 1292.237
143 1301.338 70/33
144 1310.438
145 1319.538 15/7
146 1328.638 28/13
147 1337.739 13/6
148 1346.839 37/17
149 1355.939
150 1365.039 11/5
151 1374.14 42/19
152 1383.24 20/9
153 1392.34 38/17
154 1401.441
155 1410.541 70/31
156 1419.641
157 1428.741
158 1437.842 39/17
159 1446.942 30/13
160 1456.042 51/22
161 1465.142
162 1474.243
163 1483.343
164 1492.443 45/19
165 1501.543 50/21
166 1510.644
167 1519.744
168 1528.844
169 1537.944
170 1547.045 22/9
171 1556.145
172 1565.245 42/17
173 1574.346 72/29
174 1583.446
175 1592.546
176 1601.646
177 1610.747
178 1619.847 51/20
179 1628.947
180 1638.047
181 1647.148 44/17, 57/22
182 1656.248
183 1665.348 34/13
184 1674.448 50/19
185 1683.549 37/14
186 1692.649
187 1701.749
188 1710.849 43/16
189 1719.95 27/10
190 1729.05 19/7
191 1738.15
192 1747.251
193 1756.351
194 1765.451
195 1774.551 39/14
196 1783.652
197 1792.752 31/11
198 1801.852
199 1810.952 37/13
200 1820.053
201 1829.153
202 1838.253
203 1847.353
204 1856.454 38/13
205 1865.554
206 1874.654 62/21, 65/22
207 1883.754
208 1892.855
209 1901.955 3/1

Harmonics

Approximation of prime harmonics in 209edt
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) +1.23 +0.00 -1.63 -1.73 -1.60 +0.40 +0.09 -1.37 -4.52
Relative (%) +13.6 +0.0 -17.9 -19.0 -17.6 +4.4 +0.9 -15.0 -49.6
Steps
(reduced)
132
(132)
209
(0)
306
(97)
370
(161)
456
(38)
488
(70)
539
(121)
560
(142)
596
(178)
Approximation of odd harmonics in 209edt
Harmonic 25 27 29 31 33 35 37 39 41 43 45
Error Absolute (¢) -3.27 +0.00 +3.69 -2.56 -1.60 -3.36 +0.54 +0.40 -4.28 +4.27 -1.63
Relative (%) -35.9 +0.0 +40.6 -28.2 -17.6 -36.9 +5.9 +4.4 -47.0 +46.9 -17.9
Steps
(reduced)
612
(194)
627
(0)
641
(14)
653
(26)
665
(38)
676
(49)
687
(60)
697
(70)
706
(79)
716
(89)
724
(97)