209edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 208edt 209edt 210edt →
Prime factorization 11 × 19
Step size 9.10026¢ 
Octave 132\209edt (1201.23¢) (→12\19edt)
Consistency limit 7
Distinct consistency limit 7

209 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 209edt or 209ed3), is a nonoctave tuning system that divides the interval of 3/1 into 209 equal parts of about 9.1 ¢ each. Each step represents a frequency ratio of 31/209, or the 209th root of 3.

Since 209 factors into 11 × 19, 209edt has 11edt and 19edt as subsets; it inherits its mapping of the 11th harmonic from the former and the 17th (along with the octave, corresponding to 19edt being a close octave stretch of 12edo) from the latter. It otherwise represents a very strong system in the 19-limit (even including prime 2), being the sum of 78edt which has a flat tendency in the 19-limit and 131edt which has a slight sharp tendency. Its most accurate simple intervals are 7/5, 11/5, and 17/9, all of which it approximates to within about 0.1 cents.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 9.1
2 18.2
3 27.3 63/62, 66/65
4 36.4 47/46
5 45.5 38/37, 39/38
6 54.6 65/63
7 63.7 28/27
8 72.8 49/47
9 81.9 65/62
10 91 39/37
11 100.1
12 109.2 33/31, 49/46
13 118.3
14 127.4 14/13
15 136.5
16 145.6 37/34, 62/57
17 154.7
18 163.8
19 172.9 21/19
20 182 10/9
21 191.1 48/43
22 200.2 46/41, 55/49
23 209.3 35/31, 44/39
24 218.4 42/37
25 227.5 57/50, 65/57
26 236.6 39/34, 47/41
27 245.7
28 254.8 22/19, 51/44
29 263.9
30 273 41/35, 55/47
31 282.1 20/17
32 291.2
33 300.3 44/37
34 309.4 49/41, 55/46
35 318.5
36 327.6 29/24
37 336.7 17/14
38 345.8
39 354.9 27/22, 70/57
40 364 37/30
41 373.1 31/25
42 382.2
43 391.3
44 400.4 63/50
45 409.5 19/15
46 418.6
47 427.7
48 436.8
49 445.9 22/17
50 455 13/10
51 464.1 17/13
52 473.2 46/35
53 482.3 37/28
54 491.4
55 500.5
56 509.6 47/35, 51/38, 55/41
57 518.7 27/20, 58/43
58 527.8 19/14
59 536.9 15/11
60 546 37/27
61 555.1 51/37, 62/45
62 564.2 18/13
63 573.3 39/28
64 582.4 7/5
65 591.5 38/27
66 600.6
67 609.7
68 618.8
69 627.9
70 637 13/9
71 646.1 45/31
72 655.2 54/37
73 664.3 69/47
74 673.4 31/21
75 682.5 43/29, 46/31
76 691.6
77 700.7
78 709.8
79 718.9 50/33
80 728
81 737.1
82 746.2 20/13
83 755.3 65/42
84 764.4 14/9
85 773.5
86 782.6 11/7
87 791.7 30/19, 49/31
88 800.8 27/17
89 809.9
90 819
91 828.1 50/31
92 837.2 60/37
93 846.3 44/27
94 855.4 41/25
95 864.5 28/17
96 873.6
97 882.7
98 891.8 72/43
99 900.9 37/22, 69/41
100 910 22/13
101 919.1 17/10
102 928.2
103 937.3
104 946.4 19/11
105 955.5 33/19
106 964.6
107 973.7
108 982.8 30/17
109 991.9 39/22, 55/31
110 1001 41/23, 66/37
111 1010.1 43/24, 52/29
112 1019.2
113 1028.3
114 1037.4 51/28
115 1046.5
116 1055.6 46/25
117 1064.7 37/20
118 1073.8
119 1082.9
120 1092 47/25, 62/33
121 1101.1 17/9
122 1110.2 19/10
123 1119.3 21/11
124 1128.4
125 1137.5 27/14
126 1146.6
127 1155.7 39/20
128 1164.8 49/25
129 1173.9 65/33
130 1183
131 1192.1
132 1201.2
133 1210.3
134 1219.4
135 1228.5 63/31
136 1237.6 47/23
137 1246.7 37/18
138 1255.8 31/15
139 1264.9 27/13
140 1274
141 1283.1
142 1292.2
143 1301.3 70/33
144 1310.4
145 1319.5 15/7
146 1328.6 28/13
147 1337.7 13/6
148 1346.8 37/17
149 1355.9
150 1365 11/5
151 1374.1 42/19
152 1383.2 20/9
153 1392.3 38/17
154 1401.4
155 1410.5 70/31
156 1419.6
157 1428.7
158 1437.8 39/17
159 1446.9 30/13
160 1456 51/22
161 1465.1
162 1474.2
163 1483.3
164 1492.4 45/19
165 1501.5 50/21
166 1510.6
167 1519.7
168 1528.8
169 1537.9
170 1547 22/9
171 1556.1
172 1565.2 42/17
173 1574.3 72/29
174 1583.4
175 1592.5
176 1601.6
177 1610.7
178 1619.8 51/20
179 1628.9
180 1638
181 1647.1 44/17, 57/22
182 1656.2
183 1665.3 34/13
184 1674.4 50/19
185 1683.5 37/14
186 1692.6
187 1701.7
188 1710.8 43/16
189 1719.9 27/10
190 1729.1 19/7
191 1738.2
192 1747.3
193 1756.4
194 1765.5
195 1774.6 39/14
196 1783.7
197 1792.8 31/11
198 1801.9
199 1811 37/13
200 1820.1
201 1829.2
202 1838.3
203 1847.4
204 1856.5 38/13
205 1865.6
206 1874.7 62/21, 65/22
207 1883.8
208 1892.9
209 1902 3/1

Harmonics

Approximation of prime harmonics in 209edt
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) +1.23 +0.00 -1.63 -1.73 -1.60 +0.40 +0.09 -1.37 -4.52
Relative (%) +13.6 +0.0 -17.9 -19.0 -17.6 +4.4 +0.9 -15.0 -49.6
Steps
(reduced)
132
(132)
209
(0)
306
(97)
370
(161)
456
(38)
488
(70)
539
(121)
560
(142)
596
(178)
Approximation of odd harmonics in 209edt
Harmonic 25 27 29 31 33 35 37 39 41 43 45
Error Absolute (¢) -3.27 +0.00 +3.69 -2.56 -1.60 -3.36 +0.54 +0.40 -4.28 +4.27 -1.63
Relative (%) -35.9 +0.0 +40.6 -28.2 -17.6 -36.9 +5.9 +4.4 -47.0 +46.9 -17.9
Steps
(reduced)
612
(194)
627
(0)
641
(14)
653
(26)
665
(38)
676
(49)
687
(60)
697
(70)
706
(79)
716
(89)
724
(97)