208edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 207edt208edt209edt →
Prime factorization 24 × 13
Step size 9.14401¢ 
Octave 131\208edt (1197.87¢)
Consistency limit 4
Distinct consistency limit 4

208 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 208edt or 208ed3), is a nonoctave tuning system that divides the interval of 3/1 into 208 equal parts of about 9.14 ¢ each. Each step represents a frequency ratio of 31/208, or the 208th root of 3.

Harmonics

Approximation of harmonics in 208edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -2.13 +0.00 -4.27 +2.61 -2.13 -3.83 +2.74 +0.00 +0.48 +0.06 -4.27
Relative (%) -23.3 +0.0 -46.7 +28.6 -23.3 -41.9 +30.0 +0.0 +5.2 +0.7 -46.7
Steps
(reduced)
131
(131)
208
(0)
262
(54)
305
(97)
339
(131)
368
(160)
394
(186)
416
(0)
436
(20)
454
(38)
470
(54)
Approximation of harmonics in 208edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +3.46 +3.18 +2.61 +0.61 -3.76 -2.13 -4.30 -1.66 -3.83 -2.07 +3.27
Relative (%) +37.9 +34.8 +28.6 +6.6 -41.2 -23.3 -47.0 -18.1 -41.9 -22.6 +35.8
Steps
(reduced)
486
(70)
500
(84)
513
(97)
525
(109)
536
(120)
547
(131)
557
(141)
567
(151)
576
(160)
585
(169)
594
(178)