208edt
Jump to navigation
Jump to search
Prime factorization
24 × 13
Step size
9.14401¢
Octave
131\208edt (1197.87¢)
Consistency limit
4
Distinct consistency limit
4
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 207edt | 208edt | 209edt → |
208 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 208edt or 208ed3), is a nonoctave tuning system that divides the interval of 3/1 into 208 equal parts of about 9.14 ¢ each. Each step represents a frequency ratio of 31/208, or the 208th root of 3.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.13 | +0.00 | -4.27 | +2.61 | -2.13 | -3.83 | +2.74 | +0.00 | +0.48 | +0.06 | -4.27 |
Relative (%) | -23.3 | +0.0 | -46.7 | +28.6 | -23.3 | -41.9 | +30.0 | +0.0 | +5.2 | +0.7 | -46.7 | |
Steps (reduced) |
131 (131) |
208 (0) |
262 (54) |
305 (97) |
339 (131) |
368 (160) |
394 (186) |
416 (0) |
436 (20) |
454 (38) |
470 (54) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.46 | +3.18 | +2.61 | +0.61 | -3.76 | -2.13 | -4.30 | -1.66 | -3.83 | -2.07 | +3.27 |
Relative (%) | +37.9 | +34.8 | +28.6 | +6.6 | -41.2 | -23.3 | -47.0 | -18.1 | -41.9 | -22.6 | +35.8 | |
Steps (reduced) |
486 (70) |
500 (84) |
513 (97) |
525 (109) |
536 (120) |
547 (131) |
557 (141) |
567 (151) |
576 (160) |
585 (169) |
594 (178) |