210edt
Jump to navigation
Jump to search
Prime factorization
2 × 3 × 5 × 7
Step size
9.05693¢
Octave
132\210edt (1195.51¢) (→22\35edt)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 209edt | 210edt | 211edt → |
210 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 210edt or 210ed3), is a nonoctave tuning system that divides the interval of 3/1 into 210 equal parts of about 9.06 ¢ each. Each step represents a frequency ratio of 31/210, or the 210th root of 3.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.49 | +0.00 | +0.09 | +3.22 | -4.49 | +0.35 | -4.40 | +0.00 | -1.27 | -3.24 | +0.09 |
Relative (%) | -49.5 | +0.0 | +1.0 | +35.6 | -49.5 | +3.9 | -48.6 | +0.0 | -14.0 | -35.8 | +1.0 | |
Steps (reduced) |
132 (132) |
210 (0) |
265 (55) |
308 (98) |
342 (132) |
372 (162) |
397 (187) |
420 (0) |
440 (20) |
458 (38) |
475 (55) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -4.13 | +3.22 | +0.17 | +3.90 | -4.49 | +1.54 | +3.31 | +0.35 | +1.33 | -3.17 |
Relative (%) | -29.1 | -45.6 | +35.6 | +1.9 | +43.1 | -49.5 | +17.0 | +36.5 | +3.9 | +14.7 | -35.0 | |
Steps (reduced) |
490 (70) |
504 (84) |
518 (98) |
530 (110) |
542 (122) |
552 (132) |
563 (143) |
573 (153) |
582 (162) |
591 (171) |
599 (179) |