1759edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 1758edo 1759edo 1760edo →
Prime factorization 1759 (prime)
Step size 0.682206¢ 
Fifth 1029\1759 (701.99¢)
Semitones (A1:m2) 167:132 (113.9¢ : 90.05¢)
Consistency limit 23
Distinct consistency limit 23

1759 equal divisions of the octave (abbreviated 1759edo or 1759ed2), also called 1759-tone equal temperament (1759tet) or 1759 equal temperament (1759et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1759 equal parts of about 0.682 ¢ each. Each step represents a frequency ratio of 21/1759, or the 1759th root of 2.

Theory

1759edo is consistent to the 23-odd-limit, tempering out 3025/3024, 2500/2499, 5985/5984, 4225/4224, 6175/6174, 3520/3519, 14875/14872 and 256000/255879. It supports etampesic. Essentially tempered chords in 1759et include vicetertismic chords.

Prime harmonics

Approximation of prime harmonics in 1759edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 +0.035 -0.185 -0.094 -0.096 -0.050 +0.104 -0.071 +0.037 -0.129 -0.294
Relative (%) +0.0 +5.1 -27.2 -13.7 -14.0 -7.3 +15.3 -10.4 +5.5 -18.9 -43.1
Steps
(reduced)
1759
(0)
2788
(1029)
4084
(566)
4938
(1420)
6085
(808)
6509
(1232)
7190
(154)
7472
(436)
7957
(921)
8545
(1509)
8714
(1678)

Subsets and supersets

1759edo is the 274th prime EDO.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [2788 -1759 [1759 2788]] −0.0110 0.0110 1.61
2.3.5 [-68 18 17, [-4 -59 42 [1759 2788 4084]] +0.0193 0.0437 6.41
2.3.5.7 420175/419904, 48828125/48771072, [44 -28 5 -4 [1759 2788 4084 4938]] +0.0228 0.0383 5.61
2.3.5.7.11 3025/3024, 420175/419904, 1953125/1951488, 645922816/645700815 [1759 2788 4084 4938 6085]] +0.0238 0.0343 5.03
2.3.5.7.11.13 3025/3024, 4225/4224, 256000/255879, 4100625/4100096, 420175/419904 [1759 2788 4084 4938 6085 6509]] +0.0221 0.0316 4.63
2.3.5.7.11.13.17 3025/3024, 2500/2499, 4225/4224, 56595/56576, 14875/14872, 256000/255879 [1759 2788 4084 4938 6085 6509 7190]] +0.0153 0.0336 4.93
2.3.5.7.11.13.17.19 3025/3024, 2500/2499, 5985/5984, 4225/4224, 6175/6174, 14875/14872, 256000/255879 [1759 2788 4084 4938 6085 6509 7190 7472]] +0.0155 0.0315 4.62

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 164\1759 111.882 16/15 Vavoom

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct

Music

Francium