13ed5/2

From Xenharmonic Wiki
Jump to navigation Jump to search
← 12ed5/2 13ed5/2 14ed5/2 →
Prime factorization 13 (prime)
Step size 122.024¢ 
Octave 10\13ed5/2 (1220.24¢)
(semiconvergent)
Twelfth 16\13ed5/2 (1952.39¢)
Consistency limit 5
Distinct consistency limit 2

13ed5/2 is the equal division of the 5/2 interval into 13 parts of 122.024 cents each. It roughly corresponds to 10edo, and their patent vals match up until the 7-limit.

Theory

Like 10edo, 13ed5/2 tempers out 50/49 in the no-threes 7-limit, supporting 5/2-equivalent jubilic temperament with a generator of ~7/5. In this regard, it could be considered a "no-threes cousin" of 12edo and 13edt, having the basic tuning for the octatonic scale of 5/2-equivalent jubilic (5L 3s⟨5/2⟩). It also tempers out 56/55 in the 11-limit and 26/25, 52/49 and 65/64 in the 13-limit.

Harmonics

Approximation of harmonics in 13ed5/2
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +20.2 +50.4 +40.5 +20.2 -51.4 +47.8 +60.7 -21.2 +40.5 -2.5 -31.1
Relative (%) +16.6 +41.3 +33.2 +16.6 -42.1 +39.2 +49.8 -17.3 +33.2 -2.0 -25.5
Steps
(reduced)
10
(10)
16
(3)
20
(7)
23
(10)
25
(12)
28
(2)
30
(4)
31
(5)
33
(7)
34
(8)
35
(9)
Approximation of harmonics in 13ed5/2
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -47.7 -53.9 -51.4 -41.1 -24.0 -0.9 +27.5 +60.7 -23.7 +17.7 -59.2
Relative (%) -39.1 -44.2 -42.1 -33.6 -19.7 -0.8 +22.5 +49.8 -19.5 +14.5 -48.5
Steps
(reduced)
36
(10)
37
(11)
38
(12)
39
(0)
40
(1)
41
(2)
42
(3)
43
(4)
43
(4)
44
(5)
44
(5)

Intervals

# Cents Approximate ratios* Jubilic[8] notation
0 0.000 1/1 J
1 122.024 14/13, 35/32 J&, K@
2 244.048 8/7, 28/25 K
3 366.072 5/4, 16/13, 49/40 L
4 488.096 32/25, 64/49 L&, M@
5 610.120 7/5, 10/7 M
6 732.144 20/13, 25/16, 49/32 M&, N@
7 854.168 8/5, 13/8 N
8 976.192 7/4, 25/14 O
9 1098.216 13/7, 64/35 O&, P@
10 1220.240 2/1, 49/25, 52/25 P
11 1342.264 35/16 Q
12 1464.288 16/7 Q&, J@
13 1586.312 5/2 J

* Based on treating 13ed5/2 as a 5/2.5.7.13 subgroup temperament