12ed5/2
Jump to navigation
Jump to search
Prime factorization
22 × 3
Step size
132.193¢
Octave
9\12ed5/2 (1189.74¢) (→3\4ed5/2)
Twelfth
14\12ed5/2 (1850.7¢) (→7\6ed5/2)
Consistency limit
8
Distinct consistency limit
3
Special properties
← 11ed5/2 | 12ed5/2 | 13ed5/2 → |
12ED5/2 is the equal division of the 5/2 interval into 12 parts of 132.1928 cents each. It corresponds 9edo with octave compression by 10.2647 cents. It is consistent to the 8-integer-limit and generally flat tendency for harmonics 2 through 8.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 132.193 | 12/11, 15/14, 16/15, 17/16 |
2 | 264.386 | 7/6, 20/17, 23/20 |
3 | 396.578 | 5/4, 14/11 |
4 | 528.771 | 11/8, 15/11, 23/17 |
5 | 660.964 | 16/11, 19/13, 22/15 |
6 | 793.157 | 8/5, 11/7, 14/9 |
7 | 925.35 | 12/7, 17/10 |
8 | 1057.542 | 11/6, 20/11 |
9 | 1189.735 | 2/1 |
10 | 1321.928 | 15/7, 17/8 |
11 | 1454.121 | 7/3, 16/7, 23/10 |
12 | 1586.314 | 5/2 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -10.3 | -51.3 | -20.5 | -10.3 | -61.5 | -64.0 | -30.8 | +29.7 | -20.5 | -53.3 | +60.4 |
Relative (%) | -7.8 | -38.8 | -15.5 | -7.8 | -46.5 | -48.4 | -23.3 | +22.5 | -15.5 | -40.4 | +45.7 | |
Steps (reduced) |
9 (9) |
14 (2) |
18 (6) |
21 (9) |
23 (11) |
25 (1) |
27 (3) |
29 (5) |
30 (6) |
31 (7) |
33 (9) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +54.0 | +57.9 | -61.5 | -41.1 | -13.8 | +19.4 | +58.0 | -30.8 | +16.9 | -63.6 | -8.4 |
Relative (%) | +40.9 | +43.8 | -46.5 | -31.1 | -10.5 | +14.7 | +43.9 | -23.3 | +12.8 | -48.1 | -6.3 | |
Steps (reduced) |
34 (10) |
35 (11) |
35 (11) |
36 (0) |
37 (1) |
38 (2) |
39 (3) |
39 (3) |
40 (4) |
40 (4) |
41 (5) |