12ed5/2

From Xenharmonic Wiki
Jump to navigation Jump to search
← 11ed5/212ed5/213ed5/2 →
Prime factorization 22 × 3
Step size 132.193¢ 
Octave 9\12ed5/2 (1189.74¢) (→3\4ed5/2)
Twelfth 14\12ed5/2 (1850.7¢) (→7\6ed5/2)
Consistency limit 8
Distinct consistency limit 3
Special properties

12ED5/2 is the equal division of the 5/2 interval into 12 parts of 132.1928 cents each. It corresponds 9edo with octave compression by 10.2647 cents. It is consistent to the 8-integer-limit and generally flat tendency for harmonics 2 through 8.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 132.193 12/11, 15/14, 16/15, 17/16
2 264.386 7/6, 20/17, 23/20
3 396.578 5/4, 14/11
4 528.771 11/8, 15/11, 23/17
5 660.964 16/11, 19/13, 22/15
6 793.157 8/5, 11/7, 14/9
7 925.35 12/7, 17/10
8 1057.542 11/6, 20/11
9 1189.735 2/1
10 1321.928 15/7, 17/8
11 1454.121 7/3, 16/7, 23/10
12 1586.314 5/2

Harmonics

Approximation of harmonics in 12ed5/2
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -10.3 -51.3 -20.5 -10.3 -61.5 -64.0 -30.8 +29.7 -20.5 -53.3 +60.4
Relative (%) -7.8 -38.8 -15.5 -7.8 -46.5 -48.4 -23.3 +22.5 -15.5 -40.4 +45.7
Steps
(reduced)
9
(9)
14
(2)
18
(6)
21
(9)
23
(11)
25
(1)
27
(3)
29
(5)
30
(6)
31
(7)
33
(9)
Approximation of harmonics in 12ed5/2
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +54.0 +57.9 -61.5 -41.1 -13.8 +19.4 +58.0 -30.8 +16.9 -63.6 -8.4
Relative (%) +40.9 +43.8 -46.5 -31.1 -10.5 +14.7 +43.9 -23.3 +12.8 -48.1 -6.3
Steps
(reduced)
34
(10)
35
(11)
35
(11)
36
(0)
37
(1)
38
(2)
39
(3)
39
(3)
40
(4)
40
(4)
41
(5)