127ed4
Jump to navigation
Jump to search
Prime factorization
127 (prime)
Step size
18.8976¢
Octave
64\127ed4 (1209.45¢)
Twelfth
101\127ed4 (1908.66¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 125ed4 | 127ed4 | 129ed4 → |
127 equal divisions of the 4th harmonic (abbreviated 127ed4) is a nonoctave tuning system that divides the interval of 4/1 into 127 equal parts of about 18.9 ¢ each. Each step represents a frequency ratio of 41/127, or the 127th root of 4.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 18.898 | |
2 | 37.795 | 46/45, 47/46 |
3 | 56.693 | 31/30 |
4 | 75.591 | 47/45 |
5 | 94.488 | |
6 | 113.386 | |
7 | 132.283 | |
8 | 151.181 | |
9 | 170.079 | 43/39 |
10 | 188.976 | |
11 | 207.874 | |
12 | 226.772 | |
13 | 245.669 | 38/33 |
14 | 264.567 | |
15 | 283.465 | 33/28 |
16 | 302.362 | |
17 | 321.26 | 47/39 |
18 | 340.157 | 45/37 |
19 | 359.055 | |
20 | 377.953 | 46/37 |
21 | 396.85 | 39/31 |
22 | 415.748 | 14/11, 47/37 |
23 | 434.646 | |
24 | 453.543 | 13/10 |
25 | 472.441 | |
26 | 491.339 | |
27 | 510.236 | 51/38 |
28 | 529.134 | 19/14 |
29 | 548.031 | |
30 | 566.929 | 43/31 |
31 | 585.827 | |
32 | 604.724 | |
33 | 623.622 | 43/30 |
34 | 642.52 | |
35 | 661.417 | |
36 | 680.315 | 40/27 |
37 | 699.213 | |
38 | 718.11 | |
39 | 737.008 | 26/17 |
40 | 755.906 | |
41 | 774.803 | |
42 | 793.701 | |
43 | 812.598 | |
44 | 831.496 | 21/13 |
45 | 850.394 | |
46 | 869.291 | 43/26 |
47 | 888.189 | |
48 | 907.087 | 49/29 |
49 | 925.984 | |
50 | 944.882 | 19/11, 50/29 |
51 | 963.78 | |
52 | 982.677 | 30/17 |
53 | 1001.575 | 41/23 |
54 | 1020.472 | |
55 | 1039.37 | 31/17, 51/28 |
56 | 1058.268 | |
57 | 1077.165 | |
58 | 1096.063 | |
59 | 1114.961 | |
60 | 1133.858 | |
61 | 1152.756 | 37/19 |
62 | 1171.654 | |
63 | 1190.551 | |
64 | 1209.449 | |
65 | 1228.346 | |
66 | 1247.244 | |
67 | 1266.142 | |
68 | 1285.039 | 21/10 |
69 | 1303.937 | |
70 | 1322.835 | |
71 | 1341.732 | |
72 | 1360.63 | |
73 | 1379.528 | |
74 | 1398.425 | |
75 | 1417.323 | |
76 | 1436.22 | 39/17 |
77 | 1455.118 | 51/22 |
78 | 1474.016 | |
79 | 1492.913 | 45/19 |
80 | 1511.811 | |
81 | 1530.709 | 46/19 |
82 | 1549.606 | |
83 | 1568.504 | 47/19 |
84 | 1587.402 | |
85 | 1606.299 | 43/17 |
86 | 1625.197 | |
87 | 1644.094 | |
88 | 1662.992 | |
89 | 1681.89 | 37/14 |
90 | 1700.787 | |
91 | 1719.685 | |
92 | 1738.583 | 30/11 |
93 | 1757.48 | |
94 | 1776.378 | |
95 | 1795.276 | 31/11 |
96 | 1814.173 | |
97 | 1833.071 | |
98 | 1851.969 | |
99 | 1870.866 | |
100 | 1889.764 | |
101 | 1908.661 | |
102 | 1927.559 | |
103 | 1946.457 | |
104 | 1965.354 | 28/9 |
105 | 1984.252 | |
106 | 2003.15 | |
107 | 2022.047 | 45/14 |
108 | 2040.945 | |
109 | 2059.843 | 23/7 |
110 | 2078.74 | |
111 | 2097.638 | 47/14 |
112 | 2116.535 | |
113 | 2135.433 | |
114 | 2154.331 | |
115 | 2173.228 | |
116 | 2192.126 | 39/11 |
117 | 2211.024 | |
118 | 2229.921 | |
119 | 2248.819 | 11/3 |
120 | 2267.717 | |
121 | 2286.614 | |
122 | 2305.512 | |
123 | 2324.409 | |
124 | 2343.307 | |
125 | 2362.205 | |
126 | 2381.102 | |
127 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.45 | +6.71 | +0.00 | -8.36 | -2.74 | -5.05 | +9.45 | -5.48 | +1.09 | +6.16 | +6.71 |
Relative (%) | +50.0 | +35.5 | +0.0 | -44.2 | -14.5 | -26.7 | +50.0 | -29.0 | +5.8 | +32.6 | +35.5 | |
Steps (reduced) |
64 (64) |
101 (101) |
127 (0) |
147 (20) |
164 (37) |
178 (51) |
191 (64) |
201 (74) |
211 (84) |
220 (93) |
228 (101) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.42 | +4.40 | -1.65 | +0.00 | +8.43 | +3.96 | +4.85 | -8.36 | +1.66 | -3.29 | -4.65 |
Relative (%) | +2.2 | +23.3 | -8.8 | +0.0 | +44.6 | +21.0 | +25.7 | -44.2 | +8.8 | -17.4 | -24.6 | |
Steps (reduced) |
235 (108) |
242 (115) |
248 (121) |
254 (0) |
260 (6) |
265 (11) |
270 (16) |
274 (20) |
279 (25) |
283 (29) |
287 (33) |