129ed4
Jump to navigation
Jump to search
Prime factorization
3 × 43
Step size
18.6047¢
Octave
65\129ed4 (1209.3¢)
Twelfth
102\129ed4 (1897.67¢) (→34\43ed4)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 127ed4 | 129ed4 | 131ed4 → |
129 equal divisions of the 4th harmonic (abbreviated 129ed4) is a nonoctave tuning system that divides the interval of 4/1 into 129 equal parts of about 18.6 ¢ each. Each step represents a frequency ratio of 41/129, or the 129th root of 4.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 18.6 | |
2 | 37.2 | |
3 | 55.8 | 31/30 |
4 | 74.4 | 47/45 |
5 | 93 | 19/18 |
6 | 111.6 | |
7 | 130.2 | 41/38 |
8 | 148.8 | 49/45 |
9 | 167.4 | 43/39 |
10 | 186 | 39/35 |
11 | 204.7 | |
12 | 223.3 | 33/29 |
13 | 241.9 | |
14 | 260.5 | 36/31, 43/37 |
15 | 279.1 | |
16 | 297.7 | |
17 | 316.3 | 6/5 |
18 | 334.9 | 17/14 |
19 | 353.5 | 38/31 |
20 | 372.1 | 31/25 |
21 | 390.7 | |
22 | 409.3 | 19/15 |
23 | 427.9 | |
24 | 446.5 | 22/17 |
25 | 465.1 | 17/13 |
26 | 483.7 | 41/31 |
27 | 502.3 | |
28 | 520.9 | |
29 | 539.5 | 41/30 |
30 | 558.1 | 29/21 |
31 | 576.7 | |
32 | 595.3 | 31/22 |
33 | 614 | 47/33 |
34 | 632.6 | 36/25 |
35 | 651.2 | 51/35 |
36 | 669.8 | |
37 | 688.4 | |
38 | 707 | |
39 | 725.6 | 35/23, 38/25 |
40 | 744.2 | |
41 | 762.8 | |
42 | 781.4 | 11/7 |
43 | 800 | |
44 | 818.6 | |
45 | 837.2 | 47/29 |
46 | 855.8 | 41/25 |
47 | 874.4 | |
48 | 893 | |
49 | 911.6 | 22/13 |
50 | 930.2 | |
51 | 948.8 | |
52 | 967.4 | |
53 | 986 | 23/13 |
54 | 1004.7 | 25/14 |
55 | 1023.3 | |
56 | 1041.9 | 31/17, 42/23 |
57 | 1060.5 | |
58 | 1079.1 | 41/22 |
59 | 1097.7 | |
60 | 1116.3 | |
61 | 1134.9 | |
62 | 1153.5 | 37/19 |
63 | 1172.1 | |
64 | 1190.7 | |
65 | 1209.3 | |
66 | 1227.9 | |
67 | 1246.5 | 37/18, 39/19 |
68 | 1265.1 | |
69 | 1283.7 | |
70 | 1302.3 | |
71 | 1320.9 | 15/7 |
72 | 1339.5 | 13/6 |
73 | 1358.1 | |
74 | 1376.7 | 31/14 |
75 | 1395.3 | 47/21 |
76 | 1414 | 43/19 |
77 | 1432.6 | |
78 | 1451.2 | |
79 | 1469.8 | |
80 | 1488.4 | |
81 | 1507 | 43/18 |
82 | 1525.6 | 41/17 |
83 | 1544.2 | |
84 | 1562.8 | 37/15 |
85 | 1581.4 | |
86 | 1600 | |
87 | 1618.6 | |
88 | 1637.2 | |
89 | 1655.8 | 13/5 |
90 | 1674.4 | |
91 | 1693 | |
92 | 1711.6 | |
93 | 1730.2 | 19/7 |
94 | 1748.8 | |
95 | 1767.4 | |
96 | 1786 | |
97 | 1804.7 | 17/6 |
98 | 1823.3 | 43/15 |
99 | 1841.9 | |
100 | 1860.5 | 41/14 |
101 | 1879.1 | |
102 | 1897.7 | |
103 | 1916.3 | |
104 | 1934.9 | |
105 | 1953.5 | |
106 | 1972.1 | |
107 | 1990.7 | |
108 | 2009.3 | |
109 | 2027.9 | |
110 | 2046.5 | |
111 | 2065.1 | |
112 | 2083.7 | |
113 | 2102.3 | |
114 | 2120.9 | |
115 | 2139.5 | |
116 | 2158.1 | |
117 | 2176.7 | |
118 | 2195.3 | |
119 | 2214 | |
120 | 2232.6 | |
121 | 2251.2 | 11/3 |
122 | 2269.8 | |
123 | 2288.4 | |
124 | 2307 | |
125 | 2325.6 | 23/6 |
126 | 2344.2 | |
127 | 2362.8 | |
128 | 2381.4 | |
129 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.30 | -4.28 | +0.00 | +4.38 | +5.02 | -1.38 | +9.30 | -8.56 | -4.92 | -2.48 | -4.28 |
Relative (%) | +50.0 | -23.0 | +0.0 | +23.6 | +27.0 | -7.4 | +50.0 | -46.0 | -26.4 | -13.3 | -23.0 | |
Steps (reduced) |
65 (65) |
102 (102) |
129 (0) |
150 (21) |
167 (38) |
181 (52) |
194 (65) |
204 (75) |
214 (85) |
223 (94) |
231 (102) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.98 | +7.92 | +0.10 | +0.00 | +6.67 | +0.74 | +0.16 | +4.38 | -5.66 | +6.82 | +4.28 |
Relative (%) | +32.2 | +42.6 | +0.6 | +0.0 | +35.9 | +4.0 | +0.9 | +23.6 | -30.4 | +36.7 | +23.0 | |
Steps (reduced) |
239 (110) |
246 (117) |
252 (123) |
258 (0) |
264 (6) |
269 (11) |
274 (16) |
279 (21) |
283 (25) |
288 (30) |
292 (34) |