125ed4
Jump to navigation
Jump to search
Prime factorization
53
Step size
19.2¢
Octave
63\125ed4 (1209.6¢)
Twelfth
99\125ed4 (1900.8¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 123ed4 | 125ed4 | 127ed4 → |
125 equal divisions of the 4th harmonic (abbreviated 125ed4) is a nonoctave tuning system that divides the interval of 4/1 into 125 equal parts of exactly 19.2 ¢ each. Each step represents a frequency ratio of 41/125, or the 125th root of 4.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 19.2 | |
2 | 38.4 | |
3 | 57.6 | 30/29, 31/30 |
4 | 76.8 | 23/22, 45/43, 47/45 |
5 | 96 | |
6 | 115.2 | 31/29 |
7 | 134.4 | 27/25 |
8 | 153.6 | 47/43 |
9 | 172.8 | 21/19 |
10 | 192 | 19/17 |
11 | 211.2 | 26/23 |
12 | 230.4 | |
13 | 249.6 | 15/13 |
14 | 268.8 | |
15 | 288 | 13/11 |
16 | 307.2 | 37/31 |
17 | 326.4 | |
18 | 345.6 | 11/9 |
19 | 364.8 | 21/17, 37/30 |
20 | 384 | |
21 | 403.2 | 29/23 |
22 | 422.4 | 37/29 |
23 | 441.6 | |
24 | 460.8 | 30/23 |
25 | 480 | 29/22, 33/25 |
26 | 499.2 | |
27 | 518.4 | 31/23 |
28 | 537.6 | 15/11 |
29 | 556.8 | |
30 | 576 | |
31 | 595.2 | 31/22 |
32 | 614.4 | |
33 | 633.6 | |
34 | 652.8 | 51/35 |
35 | 672 | |
36 | 691.2 | |
37 | 710.4 | |
38 | 729.6 | |
39 | 748.8 | |
40 | 768 | 39/25 |
41 | 787.2 | 41/26 |
42 | 806.4 | 43/27 |
43 | 825.6 | 29/18 |
44 | 844.8 | |
45 | 864 | |
46 | 883.2 | 5/3 |
47 | 902.4 | |
48 | 921.6 | |
49 | 940.8 | 31/18, 43/25 |
50 | 960 | 47/27 |
51 | 979.2 | |
52 | 998.4 | |
53 | 1017.6 | 9/5 |
54 | 1036.8 | |
55 | 1056 | 35/19 |
56 | 1075.2 | |
57 | 1094.4 | 47/25 |
58 | 1113.6 | |
59 | 1132.8 | 25/13 |
60 | 1152 | |
61 | 1171.2 | |
62 | 1190.4 | |
63 | 1209.6 | |
64 | 1228.8 | |
65 | 1248 | 37/18 |
66 | 1267.2 | 27/13 |
67 | 1286.4 | |
68 | 1305.6 | |
69 | 1324.8 | |
70 | 1344 | 50/23 |
71 | 1363.2 | 11/5 |
72 | 1382.4 | |
73 | 1401.6 | |
74 | 1420.8 | 25/11 |
75 | 1440 | |
76 | 1459.2 | |
77 | 1478.4 | |
78 | 1497.6 | |
79 | 1516.8 | |
80 | 1536 | 17/7 |
81 | 1555.2 | 27/11 |
82 | 1574.4 | |
83 | 1593.6 | |
84 | 1612.8 | 33/13 |
85 | 1632 | |
86 | 1651.2 | |
87 | 1670.4 | |
88 | 1689.6 | |
89 | 1708.8 | 51/19 |
90 | 1728 | 19/7 |
91 | 1747.2 | |
92 | 1766.4 | |
93 | 1785.6 | |
94 | 1804.8 | |
95 | 1824 | 43/15 |
96 | 1843.2 | 29/10 |
97 | 1862.4 | |
98 | 1881.6 | |
99 | 1900.8 | 3/1 |
100 | 1920 | |
101 | 1939.2 | |
102 | 1958.4 | 31/10 |
103 | 1977.6 | 47/15 |
104 | 1996.8 | |
105 | 2016 | |
106 | 2035.2 | |
107 | 2054.4 | |
108 | 2073.6 | |
109 | 2092.8 | |
110 | 2112 | |
111 | 2131.2 | |
112 | 2150.4 | 45/13 |
113 | 2169.6 | |
114 | 2188.8 | |
115 | 2208 | |
116 | 2227.2 | |
117 | 2246.4 | |
118 | 2265.6 | 37/10 |
119 | 2284.8 | |
120 | 2304 | |
121 | 2323.2 | |
122 | 2342.4 | |
123 | 2361.6 | 43/11 |
124 | 2380.8 | |
125 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.60 | -1.16 | +0.00 | -2.31 | +8.44 | -8.83 | +9.60 | -2.31 | +7.29 | -4.12 | -1.16 |
Relative (%) | +50.0 | -6.0 | +0.0 | -12.1 | +44.0 | -46.0 | +50.0 | -12.0 | +37.9 | -21.4 | -6.0 | |
Steps (reduced) |
63 (63) |
99 (99) |
125 (0) |
145 (20) |
162 (37) |
175 (50) |
188 (63) |
198 (73) |
208 (83) |
216 (91) |
224 (99) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.33 | +0.77 | -3.47 | +0.00 | -8.96 | +7.29 | -9.51 | -2.31 | +9.22 | +5.48 | +5.33 |
Relative (%) | -27.7 | +4.0 | -18.1 | +0.0 | -46.6 | +38.0 | -49.5 | -12.1 | +48.0 | +28.6 | +27.7 | |
Steps (reduced) |
231 (106) |
238 (113) |
244 (119) |
250 (0) |
255 (5) |
261 (11) |
265 (15) |
270 (20) |
275 (25) |
279 (29) |
283 (33) |