123ed4
Jump to navigation
Jump to search
Prime factorization
3 × 41
Step size
19.5122¢
Octave
62\123ed4 (1209.76¢)
Twelfth
97\123ed4 (1892.68¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 121ed4 | 123ed4 | 125ed4 → |
123 equal divisions of the 4th harmonic (abbreviated 123ed4) is a nonoctave tuning system that divides the interval of 4/1 into 123 equal parts of about 19.5 ¢ each. Each step represents a frequency ratio of 41/123, or the 123rd root of 4.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 19.512 | |
2 | 39.024 | 43/42, 47/46 |
3 | 58.537 | 30/29, 31/30 |
4 | 78.049 | |
5 | 97.561 | 18/17 |
6 | 117.073 | 31/29, 46/43 |
7 | 136.585 | |
8 | 156.098 | 23/21 |
9 | 175.61 | |
10 | 195.122 | 47/42 |
11 | 214.634 | 43/38 |
12 | 234.146 | |
13 | 253.659 | |
14 | 273.171 | |
15 | 292.683 | |
16 | 312.195 | |
17 | 331.707 | 23/19 |
18 | 351.22 | 38/31 |
19 | 370.732 | 31/25 |
20 | 390.244 | |
21 | 409.756 | 19/15 |
22 | 429.268 | |
23 | 448.78 | |
24 | 468.293 | 38/29 |
25 | 487.805 | |
26 | 507.317 | |
27 | 526.829 | 42/31 |
28 | 546.341 | |
29 | 565.854 | 43/31 |
30 | 585.366 | |
31 | 604.878 | |
32 | 624.39 | 33/23, 43/30 |
33 | 643.902 | |
34 | 663.415 | |
35 | 682.927 | 43/29, 46/31 |
36 | 702.439 | |
37 | 721.951 | 47/31 |
38 | 741.463 | 23/15 |
39 | 760.976 | |
40 | 780.488 | |
41 | 800 | 46/29 |
42 | 819.512 | |
43 | 839.024 | |
44 | 858.537 | |
45 | 878.049 | |
46 | 897.561 | 42/25 |
47 | 917.073 | |
48 | 936.585 | |
49 | 956.098 | 33/19 |
50 | 975.61 | |
51 | 995.122 | |
52 | 1014.634 | |
53 | 1034.146 | |
54 | 1053.659 | |
55 | 1073.171 | 13/7 |
56 | 1092.683 | 47/25 |
57 | 1112.195 | |
58 | 1131.707 | 25/13 |
59 | 1151.22 | |
60 | 1170.732 | |
61 | 1190.244 | |
62 | 1209.756 | |
63 | 1229.268 | |
64 | 1248.78 | 37/18 |
65 | 1268.293 | |
66 | 1287.805 | |
67 | 1307.317 | |
68 | 1326.829 | |
69 | 1346.341 | 37/17 |
70 | 1365.854 | 11/5 |
71 | 1385.366 | 49/22 |
72 | 1404.878 | |
73 | 1424.39 | 41/18 |
74 | 1443.902 | |
75 | 1463.415 | |
76 | 1482.927 | |
77 | 1502.439 | |
78 | 1521.951 | |
79 | 1541.463 | |
80 | 1560.976 | |
81 | 1580.488 | |
82 | 1600 | |
83 | 1619.512 | |
84 | 1639.024 | |
85 | 1658.537 | |
86 | 1678.049 | 29/11 |
87 | 1697.561 | |
88 | 1717.073 | |
89 | 1736.585 | 30/11 |
90 | 1756.098 | |
91 | 1775.61 | |
92 | 1795.122 | 31/11 |
93 | 1814.634 | |
94 | 1834.146 | |
95 | 1853.659 | 35/12 |
96 | 1873.171 | |
97 | 1892.683 | |
98 | 1912.195 | |
99 | 1931.707 | |
100 | 1951.22 | |
101 | 1970.732 | |
102 | 1990.244 | |
103 | 2009.756 | |
104 | 2029.268 | 42/13 |
105 | 2048.78 | |
106 | 2068.293 | |
107 | 2087.805 | |
108 | 2107.317 | |
109 | 2126.829 | |
110 | 2146.341 | 38/11 |
111 | 2165.854 | |
112 | 2185.366 | |
113 | 2204.878 | 25/7 |
114 | 2224.39 | 47/13 |
115 | 2243.902 | |
116 | 2263.415 | |
117 | 2282.927 | |
118 | 2302.439 | |
119 | 2321.951 | |
120 | 2341.463 | |
121 | 2360.976 | 43/11 |
122 | 2380.488 | |
123 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.76 | -9.27 | +0.00 | +3.93 | +0.48 | +6.78 | +9.76 | +0.97 | -5.83 | +4.78 | -9.27 |
Relative (%) | +50.0 | -47.5 | +0.0 | +20.1 | +2.5 | +34.8 | +50.0 | +5.0 | -29.9 | +24.5 | -47.5 | |
Steps (reduced) |
62 (62) |
97 (97) |
123 (0) |
143 (20) |
159 (36) |
173 (50) |
185 (62) |
195 (72) |
204 (81) |
213 (90) |
220 (97) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.25 | -2.97 | -5.34 | +0.00 | -7.39 | -8.79 | -4.83 | +3.93 | -2.49 | -4.98 | -3.88 |
Relative (%) | +42.3 | -15.2 | -27.4 | +0.0 | -37.9 | -45.0 | -24.8 | +20.1 | -12.8 | -25.5 | -19.9 | |
Steps (reduced) |
228 (105) |
234 (111) |
240 (117) |
246 (0) |
251 (5) |
256 (10) |
261 (15) |
266 (20) |
270 (24) |
274 (28) |
278 (32) |