121ed4
Jump to navigation
Jump to search
Prime factorization
112
Step size
19.8347¢
Octave
61\121ed4 (1209.92¢)
Twelfth
96\121ed4 (1904.13¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 119ed4 | 121ed4 | 123ed4 → |
121 equal divisions of the 4th harmonic (abbreviated 121ed4) is a nonoctave tuning system that divides the interval of 4/1 into 121 equal parts of about 19.8 ¢ each. Each step represents a frequency ratio of 41/121, or the 121st root of 4.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 19.8 | |
2 | 39.7 | |
3 | 59.5 | 30/29 |
4 | 79.3 | 22/21, 45/43 |
5 | 99.2 | |
6 | 119 | |
7 | 138.8 | |
8 | 158.7 | 23/21, 34/31 |
9 | 178.5 | 41/37 |
10 | 198.3 | 37/33 |
11 | 218.2 | 17/15 |
12 | 238 | 31/27, 39/34, 47/41 |
13 | 257.9 | |
14 | 277.7 | 27/23 |
15 | 297.5 | |
16 | 317.4 | |
17 | 337.2 | 45/37 |
18 | 357 | 43/35 |
19 | 376.9 | 41/33 |
20 | 396.7 | 39/31, 49/39 |
21 | 416.5 | |
22 | 436.4 | 9/7 |
23 | 456.2 | 13/10 |
24 | 476 | |
25 | 495.9 | |
26 | 515.7 | 31/23 |
27 | 535.5 | 15/11 |
28 | 555.4 | |
29 | 575.2 | |
30 | 595 | 31/22 |
31 | 614.9 | |
32 | 634.7 | 13/9 |
33 | 654.5 | |
34 | 674.4 | 31/21 |
35 | 694.2 | |
36 | 714 | |
37 | 733.9 | 29/19 |
38 | 753.7 | 17/11 |
39 | 773.6 | |
40 | 793.4 | 49/31 |
41 | 813.2 | |
42 | 833.1 | 34/21 |
43 | 852.9 | |
44 | 872.7 | |
45 | 892.6 | |
46 | 912.4 | 22/13, 39/23 |
47 | 932.2 | |
48 | 952.1 | |
49 | 971.9 | |
50 | 991.7 | 39/22 |
51 | 1011.6 | |
52 | 1031.4 | 49/27 |
53 | 1051.2 | |
54 | 1071.1 | 13/7 |
55 | 1090.9 | |
56 | 1110.7 | 19/10 |
57 | 1130.6 | |
58 | 1150.4 | |
59 | 1170.2 | |
60 | 1190.1 | |
61 | 1209.9 | |
62 | 1229.8 | |
63 | 1249.6 | 35/17 |
64 | 1269.4 | |
65 | 1289.3 | |
66 | 1309.1 | 49/23 |
67 | 1328.9 | |
68 | 1348.8 | |
69 | 1368.6 | |
70 | 1388.4 | 29/13 |
71 | 1408.3 | |
72 | 1428.1 | |
73 | 1447.9 | 30/13 |
74 | 1467.8 | 7/3 |
75 | 1487.6 | |
76 | 1507.4 | |
77 | 1527.3 | |
78 | 1547.1 | 22/9 |
79 | 1566.9 | 47/19 |
80 | 1586.8 | |
81 | 1606.6 | 43/17 |
82 | 1626.4 | |
83 | 1646.3 | |
84 | 1666.1 | 34/13 |
85 | 1686 | 45/17 |
86 | 1705.8 | |
87 | 1725.6 | |
88 | 1745.5 | |
89 | 1765.3 | |
90 | 1785.1 | |
91 | 1805 | |
92 | 1824.8 | 43/15 |
93 | 1844.6 | 29/10 |
94 | 1864.5 | |
95 | 1884.3 | |
96 | 1904.1 | |
97 | 1924 | |
98 | 1943.8 | |
99 | 1963.6 | |
100 | 1983.5 | 22/7 |
101 | 2003.3 | 35/11 |
102 | 2023.1 | |
103 | 2043 | |
104 | 2062.8 | |
105 | 2082.6 | 10/3 |
106 | 2102.5 | |
107 | 2122.3 | |
108 | 2142.1 | 31/9 |
109 | 2162 | |
110 | 2181.8 | |
111 | 2201.7 | |
112 | 2221.5 | |
113 | 2241.3 | |
114 | 2261.2 | |
115 | 2281 | |
116 | 2300.8 | 34/9 |
117 | 2320.7 | |
118 | 2340.5 | |
119 | 2360.3 | 43/11 |
120 | 2380.2 | |
121 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.92 | +2.18 | +0.00 | -9.45 | -7.74 | +3.07 | +9.92 | +4.35 | +0.46 | -5.86 | +2.18 |
Relative (%) | +50.0 | +11.0 | +0.0 | -47.7 | -39.0 | +15.5 | +50.0 | +22.0 | +2.3 | -29.6 | +11.0 | |
Steps (reduced) |
61 (61) |
96 (96) |
121 (0) |
140 (19) |
156 (35) |
170 (49) |
182 (61) |
192 (71) |
201 (80) |
209 (88) |
217 (96) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.45 | -6.84 | -7.28 | +0.00 | -5.78 | -5.56 | +0.01 | -9.45 | +5.25 | +4.05 | +6.44 |
Relative (%) | +12.3 | -34.5 | -36.7 | +0.0 | -29.2 | -28.0 | +0.0 | -47.7 | +26.5 | +20.4 | +32.5 | |
Steps (reduced) |
224 (103) |
230 (109) |
236 (115) |
242 (0) |
247 (5) |
252 (10) |
257 (15) |
261 (19) |
266 (24) |
270 (28) |
274 (32) |