119ed4
Jump to navigation
Jump to search
Prime factorization
7 × 17
Step size
20.1681¢
Octave
60\119ed4 (1210.08¢)
Twelfth
94\119ed4 (1895.8¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 117ed4 | 119ed4 | 121ed4 → |
119 equal divisions of the 4th harmonic (abbreviated 119ed4) is a nonoctave tuning system that divides the interval of 4/1 into 119 equal parts of about 20.2 ¢ each. Each step represents a frequency ratio of 41/119, or the 119th root of 4.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 20.2 | |
2 | 40.3 | 42/41, 43/42 |
3 | 60.5 | 30/29 |
4 | 80.7 | 43/41 |
5 | 100.8 | 18/17, 35/33 |
6 | 121 | |
7 | 141.2 | |
8 | 161.3 | 34/31 |
9 | 181.5 | |
10 | 201.7 | |
11 | 221.8 | 33/29 |
12 | 242 | |
13 | 262.2 | 43/37 |
14 | 282.4 | |
15 | 302.5 | 25/21, 31/26 |
16 | 322.7 | 41/34, 47/39 |
17 | 342.9 | |
18 | 363 | 37/30 |
19 | 383.2 | |
20 | 403.4 | |
21 | 423.5 | 23/18, 37/29 |
22 | 443.7 | |
23 | 463.9 | 17/13 |
24 | 484 | 41/31 |
25 | 504.2 | |
26 | 524.4 | 23/17, 42/31 |
27 | 544.5 | 26/19 |
28 | 564.7 | 18/13, 43/31 |
29 | 584.9 | |
30 | 605 | |
31 | 625.2 | 33/23, 43/30 |
32 | 645.4 | |
33 | 665.5 | |
34 | 685.7 | 49/33 |
35 | 705.9 | |
36 | 726.1 | 35/23 |
37 | 746.2 | |
38 | 766.4 | |
39 | 786.6 | 41/26 |
40 | 806.7 | |
41 | 826.9 | 29/18 |
42 | 847.1 | 31/19 |
43 | 867.2 | |
44 | 887.4 | |
45 | 907.6 | 49/29 |
46 | 927.7 | |
47 | 947.9 | 19/11 |
48 | 968.1 | |
49 | 988.2 | 23/13 |
50 | 1008.4 | 34/19 |
51 | 1028.6 | |
52 | 1048.7 | 11/6 |
53 | 1068.9 | |
54 | 1089.1 | |
55 | 1109.2 | 19/10 |
56 | 1129.4 | |
57 | 1149.6 | 33/17, 35/18 |
58 | 1169.7 | |
59 | 1189.9 | |
60 | 1210.1 | |
61 | 1230.3 | |
62 | 1250.4 | 35/17 |
63 | 1270.6 | |
64 | 1290.8 | |
65 | 1310.9 | 49/23 |
66 | 1331.1 | 41/19 |
67 | 1351.3 | |
68 | 1371.4 | 42/19 |
69 | 1391.6 | |
70 | 1411.8 | |
71 | 1431.9 | |
72 | 1452.1 | |
73 | 1472.3 | |
74 | 1492.4 | |
75 | 1512.6 | |
76 | 1532.8 | 46/19 |
77 | 1552.9 | |
78 | 1573.1 | |
79 | 1593.3 | |
80 | 1613.4 | 33/13 |
81 | 1633.6 | 18/7 |
82 | 1653.8 | 13/5 |
83 | 1673.9 | |
84 | 1694.1 | |
85 | 1714.3 | 35/13 |
86 | 1734.5 | 49/18 |
87 | 1754.6 | |
88 | 1774.8 | |
89 | 1795 | 31/11 |
90 | 1815.1 | |
91 | 1835.3 | |
92 | 1855.5 | |
93 | 1875.6 | |
94 | 1895.8 | |
95 | 1916 | |
96 | 1936.1 | |
97 | 1956.3 | |
98 | 1976.5 | 47/15 |
99 | 1996.6 | 19/6 |
100 | 2016.8 | |
101 | 2037 | |
102 | 2057.1 | |
103 | 2077.3 | |
104 | 2097.5 | |
105 | 2117.6 | 17/5 |
106 | 2137.8 | |
107 | 2158 | |
108 | 2178.2 | |
109 | 2198.3 | |
110 | 2218.5 | 18/5 |
111 | 2238.7 | |
112 | 2258.8 | |
113 | 2279 | 41/11 |
114 | 2299.2 | |
115 | 2319.3 | 42/11 |
116 | 2339.5 | |
117 | 2359.7 | 43/11 |
118 | 2379.8 | |
119 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.08 | -6.16 | +0.00 | -3.12 | +3.93 | -0.76 | +10.08 | +7.85 | +6.96 | +3.30 | -6.16 |
Relative (%) | +50.0 | -30.5 | +0.0 | -15.5 | +19.5 | -3.8 | +50.0 | +38.9 | +34.5 | +16.4 | -30.5 | |
Steps (reduced) |
60 (60) |
94 (94) |
119 (0) |
138 (19) |
154 (35) |
167 (48) |
179 (60) |
189 (70) |
198 (79) |
206 (87) |
213 (94) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.55 | +9.33 | -9.28 | +0.00 | -4.12 | -2.23 | +5.01 | -3.12 | -6.92 | -6.78 | -3.06 |
Relative (%) | -17.6 | +46.2 | -46.0 | +0.0 | -20.4 | -11.1 | +24.8 | -15.5 | -34.3 | -33.6 | -15.2 | |
Steps (reduced) |
220 (101) |
227 (108) |
232 (113) |
238 (0) |
243 (5) |
248 (10) |
253 (15) |
257 (19) |
261 (23) |
265 (27) |
269 (31) |