117ed4
Jump to navigation
Jump to search
Prime factorization
32 × 13
Step size
20.5128¢
Octave
59\117ed4 (1210.26¢)
Twelfth
93\117ed4 (1907.69¢) (→31\39ed4)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 115ed4 | 117ed4 | 119ed4 → |
117 equal divisions of the 4th harmonic (abbreviated 117ed4) is a nonoctave tuning system that divides the interval of 4/1 into 117 equal parts of about 20.5 ¢ each. Each step represents a frequency ratio of 41/117, or the 117th root of 4.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 20.513 | |
2 | 41.026 | |
3 | 61.538 | 28/27 |
4 | 82.051 | 22/21, 43/41 |
5 | 102.564 | 35/33 |
6 | 123.077 | |
7 | 143.59 | 25/23 |
8 | 164.103 | |
9 | 184.615 | |
10 | 205.128 | |
11 | 225.641 | 33/29, 49/43 |
12 | 246.154 | |
13 | 266.667 | |
14 | 287.179 | 13/11 |
15 | 307.692 | 37/31, 49/41 |
16 | 328.205 | |
17 | 348.718 | |
18 | 369.231 | 26/21 |
19 | 389.744 | |
20 | 410.256 | 19/15 |
21 | 430.769 | |
22 | 451.282 | |
23 | 471.795 | |
24 | 492.308 | |
25 | 512.821 | 35/26, 39/29 |
26 | 533.333 | 34/25 |
27 | 553.846 | |
28 | 574.359 | |
29 | 594.872 | 31/22 |
30 | 615.385 | |
31 | 635.897 | |
32 | 656.41 | |
33 | 676.923 | 34/23, 37/25 |
34 | 697.436 | |
35 | 717.949 | |
36 | 738.462 | 23/15 |
37 | 758.974 | |
38 | 779.487 | |
39 | 800 | |
40 | 820.513 | 45/28 |
41 | 841.026 | |
42 | 861.538 | |
43 | 882.051 | |
44 | 902.564 | |
45 | 923.077 | 29/17, 46/27 |
46 | 943.59 | |
47 | 964.103 | |
48 | 984.615 | |
49 | 1005.128 | 25/14 |
50 | 1025.641 | 47/26 |
51 | 1046.154 | |
52 | 1066.667 | |
53 | 1087.179 | |
54 | 1107.692 | |
55 | 1128.205 | |
56 | 1148.718 | 33/17 |
57 | 1169.231 | |
58 | 1189.744 | |
59 | 1210.256 | |
60 | 1230.769 | |
61 | 1251.282 | 35/17 |
62 | 1271.795 | |
63 | 1292.308 | 19/9 |
64 | 1312.821 | 47/22 |
65 | 1333.333 | |
66 | 1353.846 | |
67 | 1374.359 | 31/14, 42/19 |
68 | 1394.872 | 47/21 |
69 | 1415.385 | 34/15 |
70 | 1435.897 | 39/17 |
71 | 1456.41 | |
72 | 1476.923 | |
73 | 1497.436 | |
74 | 1517.949 | |
75 | 1538.462 | |
76 | 1558.974 | |
77 | 1579.487 | |
78 | 1600 | |
79 | 1620.513 | |
80 | 1641.026 | |
81 | 1661.538 | |
82 | 1682.051 | 37/14 |
83 | 1702.564 | |
84 | 1723.077 | |
85 | 1743.59 | |
86 | 1764.103 | |
87 | 1784.615 | |
88 | 1805.128 | |
89 | 1825.641 | |
90 | 1846.154 | |
91 | 1866.667 | |
92 | 1887.179 | |
93 | 1907.692 | |
94 | 1928.205 | |
95 | 1948.718 | |
96 | 1969.231 | |
97 | 1989.744 | 41/13 |
98 | 2010.256 | |
99 | 2030.769 | |
100 | 2051.282 | |
101 | 2071.795 | 43/13 |
102 | 2092.308 | |
103 | 2112.821 | |
104 | 2133.333 | |
105 | 2153.846 | |
106 | 2174.359 | |
107 | 2194.872 | |
108 | 2215.385 | |
109 | 2235.897 | |
110 | 2256.41 | |
111 | 2276.923 | 41/11 |
112 | 2297.436 | 49/13 |
113 | 2317.949 | |
114 | 2338.462 | |
115 | 2358.974 | 43/11 |
116 | 2379.487 | |
117 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.26 | +5.74 | +0.00 | +3.43 | -4.52 | -4.72 | +10.26 | -9.04 | -6.83 | -7.73 | +5.74 |
Relative (%) | +50.0 | +28.0 | +0.0 | +16.7 | -22.0 | -23.0 | +50.0 | -44.1 | -33.3 | -37.7 | +28.0 | |
Steps (reduced) |
59 (59) |
93 (93) |
117 (0) |
136 (19) |
151 (34) |
164 (47) |
176 (59) |
185 (68) |
194 (77) |
202 (85) |
210 (93) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.76 | +5.53 | +9.17 | +0.00 | -2.39 | +1.22 | +10.18 | +3.43 | +1.01 | +2.53 | +7.62 |
Relative (%) | -47.6 | +27.0 | +44.7 | +0.0 | -11.7 | +5.9 | +49.6 | +16.7 | +4.9 | +12.3 | +37.2 | |
Steps (reduced) |
216 (99) |
223 (106) |
229 (112) |
234 (0) |
239 (5) |
244 (10) |
249 (15) |
253 (19) |
257 (23) |
261 (27) |
265 (31) |