117ed4
Jump to navigation
Jump to search
Prime factorization
32 × 13
Step size
20.5128¢
Octave
59\117ed4 (1210.26¢)
Twelfth
93\117ed4 (1907.69¢) (→31\39ed4)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 115ed4 | 117ed4 | 119ed4 → |
117 equal divisions of the 4th harmonic (abbreviated 117ed4) is a nonoctave tuning system that divides the interval of 4/1 into 117 equal parts of about 20.5 ¢ each. Each step represents a frequency ratio of 41/117, or the 117th root of 4.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 20.5 | |
2 | 41 | |
3 | 61.5 | 28/27 |
4 | 82.1 | 22/21, 43/41 |
5 | 102.6 | 35/33 |
6 | 123.1 | |
7 | 143.6 | 25/23 |
8 | 164.1 | |
9 | 184.6 | |
10 | 205.1 | |
11 | 225.6 | 33/29, 49/43 |
12 | 246.2 | |
13 | 266.7 | |
14 | 287.2 | 13/11 |
15 | 307.7 | 37/31, 49/41 |
16 | 328.2 | |
17 | 348.7 | |
18 | 369.2 | 26/21 |
19 | 389.7 | |
20 | 410.3 | 19/15 |
21 | 430.8 | |
22 | 451.3 | |
23 | 471.8 | |
24 | 492.3 | |
25 | 512.8 | 35/26, 39/29 |
26 | 533.3 | 34/25 |
27 | 553.8 | |
28 | 574.4 | |
29 | 594.9 | 31/22 |
30 | 615.4 | |
31 | 635.9 | |
32 | 656.4 | |
33 | 676.9 | 34/23, 37/25 |
34 | 697.4 | |
35 | 717.9 | |
36 | 738.5 | 23/15 |
37 | 759 | |
38 | 779.5 | |
39 | 800 | |
40 | 820.5 | 45/28 |
41 | 841 | |
42 | 861.5 | |
43 | 882.1 | |
44 | 902.6 | |
45 | 923.1 | 29/17, 46/27 |
46 | 943.6 | |
47 | 964.1 | |
48 | 984.6 | |
49 | 1005.1 | 25/14 |
50 | 1025.6 | 47/26 |
51 | 1046.2 | |
52 | 1066.7 | |
53 | 1087.2 | |
54 | 1107.7 | |
55 | 1128.2 | |
56 | 1148.7 | 33/17 |
57 | 1169.2 | |
58 | 1189.7 | |
59 | 1210.3 | |
60 | 1230.8 | |
61 | 1251.3 | 35/17 |
62 | 1271.8 | |
63 | 1292.3 | 19/9 |
64 | 1312.8 | 47/22 |
65 | 1333.3 | |
66 | 1353.8 | |
67 | 1374.4 | 31/14, 42/19 |
68 | 1394.9 | 47/21 |
69 | 1415.4 | 34/15 |
70 | 1435.9 | 39/17 |
71 | 1456.4 | |
72 | 1476.9 | |
73 | 1497.4 | |
74 | 1517.9 | |
75 | 1538.5 | |
76 | 1559 | |
77 | 1579.5 | |
78 | 1600 | |
79 | 1620.5 | |
80 | 1641 | |
81 | 1661.5 | |
82 | 1682.1 | 37/14 |
83 | 1702.6 | |
84 | 1723.1 | |
85 | 1743.6 | |
86 | 1764.1 | |
87 | 1784.6 | |
88 | 1805.1 | |
89 | 1825.6 | |
90 | 1846.2 | |
91 | 1866.7 | |
92 | 1887.2 | |
93 | 1907.7 | |
94 | 1928.2 | |
95 | 1948.7 | |
96 | 1969.2 | |
97 | 1989.7 | 41/13 |
98 | 2010.3 | |
99 | 2030.8 | |
100 | 2051.3 | |
101 | 2071.8 | 43/13 |
102 | 2092.3 | |
103 | 2112.8 | |
104 | 2133.3 | |
105 | 2153.8 | |
106 | 2174.4 | |
107 | 2194.9 | |
108 | 2215.4 | |
109 | 2235.9 | |
110 | 2256.4 | |
111 | 2276.9 | 41/11 |
112 | 2297.4 | 49/13 |
113 | 2317.9 | |
114 | 2338.5 | |
115 | 2359 | 43/11 |
116 | 2379.5 | |
117 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.26 | +5.74 | +0.00 | +3.43 | -4.52 | -4.72 | +10.26 | -9.04 | -6.83 | -7.73 | +5.74 |
Relative (%) | +50.0 | +28.0 | +0.0 | +16.7 | -22.0 | -23.0 | +50.0 | -44.1 | -33.3 | -37.7 | +28.0 | |
Steps (reduced) |
59 (59) |
93 (93) |
117 (0) |
136 (19) |
151 (34) |
164 (47) |
176 (59) |
185 (68) |
194 (77) |
202 (85) |
210 (93) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.76 | +5.53 | +9.17 | +0.00 | -2.39 | +1.22 | +10.18 | +3.43 | +1.01 | +2.53 | +7.62 |
Relative (%) | -47.6 | +27.0 | +44.7 | +0.0 | -11.7 | +5.9 | +49.6 | +16.7 | +4.9 | +12.3 | +37.2 | |
Steps (reduced) |
216 (99) |
223 (106) |
229 (112) |
234 (0) |
239 (5) |
244 (10) |
249 (15) |
253 (19) |
257 (23) |
261 (27) |
265 (31) |