115ed4
Jump to navigation
Jump to search
Prime factorization
5 × 23
Step size
20.8696¢
Octave
58\115ed4 (1210.43¢)
Twelfth
91\115ed4 (1899.13¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 113ed4 | 115ed4 | 117ed4 → |
115 equal divisions of the 4th harmonic (abbreviated 115ed4) is a nonoctave tuning system that divides the interval of 4/1 into 115 equal parts of about 20.9 ¢ each. Each step represents a frequency ratio of 41/115, or the 115th root of 4.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 20.87 | |
2 | 41.739 | 42/41, 43/42 |
3 | 62.609 | |
4 | 83.478 | 43/41 |
5 | 104.348 | |
6 | 125.217 | 29/27 |
7 | 146.087 | 37/34 |
8 | 166.957 | 43/39 |
9 | 187.826 | 39/35 |
10 | 208.696 | 35/31 |
11 | 229.565 | |
12 | 250.435 | |
13 | 271.304 | |
14 | 292.174 | 45/38 |
15 | 313.043 | |
16 | 333.913 | |
17 | 354.783 | 43/35 |
18 | 375.652 | 41/33, 46/37 |
19 | 396.522 | 39/31 |
20 | 417.391 | 14/11 |
21 | 438.261 | |
22 | 459.13 | 43/33 |
23 | 480 | |
24 | 500.87 | |
25 | 521.739 | 23/17 |
26 | 542.609 | |
27 | 563.478 | 18/13 |
28 | 584.348 | |
29 | 605.217 | |
30 | 626.087 | 33/23 |
31 | 646.957 | 45/31 |
32 | 667.826 | |
33 | 688.696 | |
34 | 709.565 | |
35 | 730.435 | 29/19 |
36 | 751.304 | |
37 | 772.174 | |
38 | 793.043 | |
39 | 813.913 | |
40 | 834.783 | 47/29 |
41 | 855.652 | |
42 | 876.522 | |
43 | 897.391 | |
44 | 918.261 | |
45 | 939.13 | 31/18 |
46 | 960 | 47/27 |
47 | 980.87 | |
48 | 1001.739 | 41/23 |
49 | 1022.609 | |
50 | 1043.478 | 42/23 |
51 | 1064.348 | |
52 | 1085.217 | 43/23 |
53 | 1106.087 | |
54 | 1126.957 | |
55 | 1147.826 | 33/17 |
56 | 1168.696 | |
57 | 1189.565 | |
58 | 1210.435 | |
59 | 1231.304 | |
60 | 1252.174 | 35/17 |
61 | 1273.043 | |
62 | 1293.913 | 19/9 |
63 | 1314.783 | |
64 | 1335.652 | |
65 | 1356.522 | |
66 | 1377.391 | 31/14 |
67 | 1398.261 | |
68 | 1419.13 | |
69 | 1440 | |
70 | 1460.87 | |
71 | 1481.739 | |
72 | 1502.609 | 31/13 |
73 | 1523.478 | 41/17 |
74 | 1544.348 | |
75 | 1565.217 | 42/17 |
76 | 1586.087 | 5/2 |
77 | 1606.957 | 43/17 |
78 | 1627.826 | |
79 | 1648.696 | |
80 | 1669.565 | |
81 | 1690.435 | |
82 | 1711.304 | |
83 | 1732.174 | |
84 | 1753.043 | |
85 | 1773.913 | 39/14 |
86 | 1794.783 | 31/11 |
87 | 1815.652 | |
88 | 1836.522 | |
89 | 1857.391 | 38/13 |
90 | 1878.261 | |
91 | 1899.13 | |
92 | 1920 | |
93 | 1940.87 | 43/14, 46/15 |
94 | 1961.739 | |
95 | 1982.609 | |
96 | 2003.478 | 35/11 |
97 | 2024.348 | 29/9 |
98 | 2045.217 | |
99 | 2066.087 | |
100 | 2086.957 | |
101 | 2107.826 | |
102 | 2128.696 | |
103 | 2149.565 | 45/13 |
104 | 2170.435 | |
105 | 2191.304 | 39/11 |
106 | 2212.174 | |
107 | 2233.043 | |
108 | 2253.913 | |
109 | 2274.783 | |
110 | 2295.652 | |
111 | 2316.522 | |
112 | 2337.391 | 27/7 |
113 | 2358.261 | 43/11 |
114 | 2379.13 | |
115 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.43 | -2.82 | +0.00 | +10.21 | +7.61 | -8.83 | +10.43 | -5.65 | -0.23 | +1.73 | -2.82 |
Relative (%) | +50.0 | -13.5 | +0.0 | +48.9 | +36.5 | -42.3 | +50.0 | -27.1 | -1.1 | +8.3 | -13.5 | |
Steps (reduced) |
58 (58) |
91 (91) |
115 (0) |
134 (19) |
149 (34) |
161 (46) |
173 (58) |
182 (67) |
191 (76) |
199 (84) |
206 (91) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.69 | +1.61 | +7.38 | +0.00 | -0.61 | +4.79 | -5.34 | +10.21 | +9.22 | -8.71 | -2.19 |
Relative (%) | +22.5 | +7.7 | +35.4 | +0.0 | -2.9 | +22.9 | -25.6 | +48.9 | +44.2 | -41.7 | -10.5 | |
Steps (reduced) |
213 (98) |
219 (104) |
225 (110) |
230 (0) |
235 (5) |
240 (10) |
244 (14) |
249 (19) |
253 (23) |
256 (26) |
260 (30) |