113ed4
Jump to navigation
Jump to search
Prime factorization
113 (prime)
Step size
21.2389¢
Octave
57\113ed4 (1210.62¢)
Twelfth
90\113ed4 (1911.5¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 111ed4 | 113ed4 | 115ed4 → |
113 equal divisions of the 4th harmonic (abbreviated 113ed4) is a nonoctave tuning system that divides the interval of 4/1 into 113 equal parts of about 21.2 ¢ each. Each step represents a frequency ratio of 41/113, or the 113th root of 4.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 21.239 | |
2 | 42.478 | |
3 | 63.717 | 28/27 |
4 | 84.956 | 21/20, 41/39 |
5 | 106.195 | 33/31 |
6 | 127.434 | |
7 | 148.673 | |
8 | 169.912 | 43/39 |
9 | 191.15 | 19/17 |
10 | 212.389 | 26/23, 43/38 |
11 | 233.628 | |
12 | 254.867 | 22/19, 29/25 |
13 | 276.106 | |
14 | 297.345 | |
15 | 318.584 | |
16 | 339.823 | |
17 | 361.062 | |
18 | 382.301 | |
19 | 403.54 | |
20 | 424.779 | |
21 | 446.018 | 22/17 |
22 | 467.257 | |
23 | 488.496 | |
24 | 509.735 | 47/35 |
25 | 530.973 | |
26 | 552.212 | |
27 | 573.451 | |
28 | 594.69 | 31/22 |
29 | 615.929 | 10/7 |
30 | 637.168 | |
31 | 658.407 | 19/13 |
32 | 679.646 | 37/25, 40/27 |
33 | 700.885 | 3/2 |
34 | 722.124 | 47/31 |
35 | 743.363 | |
36 | 764.602 | 14/9 |
37 | 785.841 | |
38 | 807.08 | |
39 | 828.319 | |
40 | 849.558 | 31/19 |
41 | 870.796 | 38/23, 43/26 |
42 | 892.035 | |
43 | 913.274 | 39/23 |
44 | 934.513 | |
45 | 955.752 | 33/19 |
46 | 976.991 | |
47 | 998.23 | |
48 | 1019.469 | |
49 | 1040.708 | 31/17 |
50 | 1061.947 | |
51 | 1083.186 | 43/23 |
52 | 1104.425 | |
53 | 1125.664 | |
54 | 1146.903 | 33/17 |
55 | 1168.142 | |
56 | 1189.381 | |
57 | 1210.619 | |
58 | 1231.858 | |
59 | 1253.097 | |
60 | 1274.336 | |
61 | 1295.575 | |
62 | 1316.814 | |
63 | 1338.053 | |
64 | 1359.292 | 46/21 |
65 | 1380.531 | 20/9 |
66 | 1401.77 | 9/4 |
67 | 1423.009 | 25/11 |
68 | 1444.248 | |
69 | 1465.487 | 7/3 |
70 | 1486.726 | |
71 | 1507.965 | |
72 | 1529.204 | |
73 | 1550.442 | |
74 | 1571.681 | |
75 | 1592.92 | |
76 | 1614.159 | 33/13 |
77 | 1635.398 | |
78 | 1656.637 | |
79 | 1677.876 | 29/11 |
80 | 1699.115 | |
81 | 1720.354 | |
82 | 1741.593 | 41/15 |
83 | 1762.832 | |
84 | 1784.071 | |
85 | 1805.31 | |
86 | 1826.549 | |
87 | 1847.788 | |
88 | 1869.027 | |
89 | 1890.265 | |
90 | 1911.504 | |
91 | 1932.743 | |
92 | 1953.982 | |
93 | 1975.221 | 47/15 |
94 | 1996.46 | |
95 | 2017.699 | |
96 | 2038.938 | |
97 | 2060.177 | 23/7 |
98 | 2081.416 | |
99 | 2102.655 | |
100 | 2123.894 | |
101 | 2145.133 | |
102 | 2166.372 | |
103 | 2187.611 | |
104 | 2208.85 | |
105 | 2230.088 | |
106 | 2251.327 | |
107 | 2272.566 | 26/7 |
108 | 2293.805 | |
109 | 2315.044 | |
110 | 2336.283 | |
111 | 2357.522 | 39/10 |
112 | 2378.761 | |
113 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.62 | +9.55 | +0.00 | -4.01 | -1.07 | +8.17 | +10.62 | -2.14 | +6.61 | -9.73 | +9.55 |
Relative (%) | +50.0 | +45.0 | +0.0 | -18.9 | -5.0 | +38.4 | +50.0 | -10.1 | +31.1 | -45.8 | +45.0 | |
Steps (reduced) |
57 (57) |
90 (90) |
113 (0) |
131 (18) |
146 (33) |
159 (46) |
170 (57) |
179 (66) |
188 (75) |
195 (82) |
203 (90) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.59 | -2.45 | +5.54 | +0.00 | +1.24 | +8.48 | -0.17 | -4.01 | -3.52 | +0.89 | +8.89 |
Relative (%) | -7.5 | -11.6 | +26.1 | +0.0 | +5.8 | +39.9 | -0.8 | -18.9 | -16.6 | +4.2 | +41.9 | |
Steps (reduced) |
209 (96) |
215 (102) |
221 (108) |
226 (0) |
231 (5) |
236 (10) |
240 (14) |
244 (18) |
248 (22) |
252 (26) |
256 (30) |