111ed4
Jump to navigation
Jump to search
Prime factorization
3 × 37
Step size
21.6216¢
Octave
56\111ed4 (1210.81¢)
Twelfth
88\111ed4 (1902.7¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 109ed4 | 111ed4 | 113ed4 → |
111 equal divisions of the 4th harmonic (abbreviated 111ed4) is a nonoctave tuning system that divides the interval of 4/1 into 111 equal parts of about 21.6 ¢ each. Each step represents a frequency ratio of 41/111, or the 111th root of 4.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 21.622 | |
2 | 43.243 | |
3 | 64.865 | 27/26 |
4 | 86.486 | 41/39 |
5 | 108.108 | 33/31 |
6 | 129.73 | |
7 | 151.351 | |
8 | 172.973 | 21/19 |
9 | 194.595 | 19/17 |
10 | 216.216 | 17/15 |
11 | 237.838 | 31/27, 47/41 |
12 | 259.459 | 43/37 |
13 | 281.081 | |
14 | 302.703 | 25/21, 31/26 |
15 | 324.324 | 35/29, 47/39 |
16 | 345.946 | 11/9 |
17 | 367.568 | 21/17, 26/21 |
18 | 389.189 | |
19 | 410.811 | 19/15, 33/26 |
20 | 432.432 | |
21 | 454.054 | |
22 | 475.676 | 25/19 |
23 | 497.297 | |
24 | 518.919 | 31/23 |
25 | 540.541 | |
26 | 562.162 | |
27 | 583.784 | 7/5 |
28 | 605.405 | |
29 | 627.027 | 33/23 |
30 | 648.649 | |
31 | 670.27 | |
32 | 691.892 | |
33 | 713.514 | |
34 | 735.135 | 26/17 |
35 | 756.757 | |
36 | 778.378 | |
37 | 800 | 27/17, 46/29 |
38 | 821.622 | 37/23 |
39 | 843.243 | |
40 | 864.865 | |
41 | 886.486 | 5/3 |
42 | 908.108 | |
43 | 929.73 | |
44 | 951.351 | 26/15, 45/26 |
45 | 972.973 | |
46 | 994.595 | |
47 | 1016.216 | 9/5 |
48 | 1037.838 | |
49 | 1059.459 | 35/19 |
50 | 1081.081 | 43/23 |
51 | 1102.703 | 17/9 |
52 | 1124.324 | |
53 | 1145.946 | |
54 | 1167.568 | |
55 | 1189.189 | |
56 | 1210.811 | |
57 | 1232.432 | |
58 | 1254.054 | |
59 | 1275.676 | 23/11 |
60 | 1297.297 | |
61 | 1318.919 | 15/7 |
62 | 1340.541 | |
63 | 1362.162 | |
64 | 1383.784 | |
65 | 1405.405 | |
66 | 1427.027 | |
67 | 1448.649 | |
68 | 1470.27 | |
69 | 1491.892 | 45/19 |
70 | 1513.514 | |
71 | 1535.135 | 17/7 |
72 | 1556.757 | |
73 | 1578.378 | |
74 | 1600 | |
75 | 1621.622 | |
76 | 1643.243 | |
77 | 1664.865 | |
78 | 1686.486 | 45/17 |
79 | 1708.108 | |
80 | 1729.73 | 19/7 |
81 | 1751.351 | |
82 | 1772.973 | |
83 | 1794.595 | 31/11 |
84 | 1816.216 | |
85 | 1837.838 | 26/9 |
86 | 1859.459 | |
87 | 1881.081 | |
88 | 1902.703 | 3/1 |
89 | 1924.324 | |
90 | 1945.946 | |
91 | 1967.568 | |
92 | 1989.189 | 41/13 |
93 | 2010.811 | |
94 | 2032.432 | |
95 | 2054.054 | |
96 | 2075.676 | |
97 | 2097.297 | |
98 | 2118.919 | 17/5 |
99 | 2140.541 | 31/9 |
100 | 2162.162 | |
101 | 2183.784 | |
102 | 2205.405 | 25/7 |
103 | 2227.027 | 47/13 |
104 | 2248.649 | 11/3 |
105 | 2270.27 | 26/7 |
106 | 2291.892 | |
107 | 2313.514 | |
108 | 2335.135 | 27/7 |
109 | 2356.757 | |
110 | 2378.378 | |
111 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.81 | +0.75 | +0.00 | +2.88 | -10.06 | +4.15 | +10.81 | +1.50 | -7.94 | +0.03 | +0.75 |
Relative (%) | +50.0 | +3.5 | +0.0 | +13.3 | -46.5 | +19.2 | +50.0 | +6.9 | -36.7 | +0.2 | +3.5 | |
Steps (reduced) |
56 (56) |
88 (88) |
111 (0) |
129 (18) |
143 (32) |
156 (45) |
167 (56) |
176 (65) |
184 (73) |
192 (81) |
199 (88) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.10 | -6.66 | +3.62 | +0.00 | +3.15 | -9.32 | +5.19 | +2.88 | +4.89 | -10.78 | -1.25 |
Relative (%) | -37.4 | -30.8 | +16.8 | +0.0 | +14.6 | -43.1 | +24.0 | +13.3 | +22.6 | -49.8 | -5.8 | |
Steps (reduced) |
205 (94) |
211 (100) |
217 (106) |
222 (0) |
227 (5) |
231 (9) |
236 (14) |
240 (18) |
244 (22) |
247 (25) |
251 (29) |