105ed7/3
Jump to navigation
Jump to search
Prime factorization
3 × 5 × 7
Step size
13.9702¢
Octave
86\105ed7/3 (1201.44¢)
Twelfth
136\105ed7/3 (1899.95¢)
Consistency limit
4
Distinct consistency limit
4
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 104ed7/3 | 105ed7/3 | 106ed7/3 → |
105 equal divisions of 7/3 (abbreviated 105ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 105 equal parts of about 14 ¢ each. Each step represents a frequency ratio of (7/3)1/105, or the 105th root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 13.97 | |
2 | 27.94 | |
3 | 41.911 | 40/39, 41/40, 42/41, 43/42, 44/43 |
4 | 55.881 | 32/31 |
5 | 69.851 | |
6 | 83.821 | 21/20, 43/41 |
7 | 97.791 | 18/17, 37/35 |
8 | 111.762 | |
9 | 125.732 | 29/27, 43/40 |
10 | 139.702 | 13/12 |
11 | 153.672 | |
12 | 167.642 | 43/39 |
13 | 181.613 | 10/9 |
14 | 195.583 | |
15 | 209.553 | 44/39 |
16 | 223.523 | 33/29, 41/36 |
17 | 237.493 | 39/34 |
18 | 251.464 | 22/19 |
19 | 265.434 | 7/6 |
20 | 279.404 | 20/17 |
21 | 293.374 | |
22 | 307.344 | 43/36 |
23 | 321.315 | |
24 | 335.285 | 17/14, 40/33 |
25 | 349.255 | 11/9 |
26 | 363.225 | 37/30 |
27 | 377.195 | 41/33 |
28 | 391.166 | |
29 | 405.136 | 24/19, 43/34 |
30 | 419.106 | 14/11 |
31 | 433.076 | 9/7 |
32 | 447.046 | 22/17, 35/27 |
33 | 461.017 | |
34 | 474.987 | |
35 | 488.957 | |
36 | 502.927 | |
37 | 516.897 | 31/23 |
38 | 530.868 | 19/14 |
39 | 544.838 | 26/19, 37/27 |
40 | 558.808 | 29/21, 40/29 |
41 | 572.778 | 32/23, 39/28 |
42 | 586.748 | |
43 | 600.719 | 17/12, 41/29 |
44 | 614.689 | |
45 | 628.659 | 23/16 |
46 | 642.629 | 29/20, 42/29 |
47 | 656.599 | 19/13 |
48 | 670.57 | 28/19 |
49 | 684.54 | 46/31 |
50 | 698.51 | |
51 | 712.48 | |
52 | 726.45 | |
53 | 740.421 | 43/28 |
54 | 754.391 | 17/11 |
55 | 768.361 | |
56 | 782.331 | 11/7 |
57 | 796.301 | 19/12 |
58 | 810.272 | |
59 | 824.242 | 29/18 |
60 | 838.212 | 13/8 |
61 | 852.182 | 18/11 |
62 | 866.152 | 28/17, 33/20 |
63 | 880.123 | |
64 | 894.093 | |
65 | 908.063 | |
66 | 922.033 | |
67 | 936.003 | |
68 | 949.974 | |
69 | 963.944 | |
70 | 977.914 | |
71 | 991.884 | 39/22 |
72 | 1005.854 | 34/19 |
73 | 1019.825 | 9/5 |
74 | 1033.795 | 20/11 |
75 | 1047.765 | 11/6 |
76 | 1061.735 | 24/13 |
77 | 1075.705 | 41/22 |
78 | 1089.676 | |
79 | 1103.646 | |
80 | 1117.616 | 21/11, 40/21 |
81 | 1131.586 | |
82 | 1145.556 | 31/16 |
83 | 1159.527 | 41/21, 43/22 |
84 | 1173.497 | |
85 | 1187.467 | |
86 | 1201.437 | 2/1 |
87 | 1215.407 | |
88 | 1229.378 | |
89 | 1243.348 | 39/19, 41/20 |
90 | 1257.318 | |
91 | 1271.288 | |
92 | 1285.258 | 21/10 |
93 | 1299.229 | 36/17 |
94 | 1313.199 | |
95 | 1327.169 | 28/13, 43/20 |
96 | 1341.139 | |
97 | 1355.109 | |
98 | 1369.08 | |
99 | 1383.05 | 20/9 |
100 | 1397.02 | |
101 | 1410.99 | |
102 | 1424.96 | 41/18 |
103 | 1438.931 | 39/17 |
104 | 1452.901 | 44/19 |
105 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.44 | -2.01 | +2.87 | -6.24 | -0.57 | -2.01 | +4.31 | -4.02 | -4.81 | -2.17 | +0.87 |
Relative (%) | +10.3 | -14.4 | +20.6 | -44.7 | -4.1 | -14.4 | +30.9 | -28.7 | -34.4 | -15.5 | +6.2 | |
Steps (reduced) |
86 (86) |
136 (31) |
172 (67) |
199 (94) |
222 (12) |
241 (31) |
258 (48) |
272 (62) |
285 (75) |
297 (87) |
308 (98) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.00 | -0.57 | +5.72 | +5.75 | -1.42 | -2.58 | +1.61 | -3.37 | -4.02 | -0.73 | +6.13 |
Relative (%) | +14.3 | -4.1 | +40.9 | +41.1 | -10.1 | -18.5 | +11.5 | -24.1 | -28.7 | -5.2 | +43.9 | |
Steps (reduced) |
318 (3) |
327 (12) |
336 (21) |
344 (29) |
351 (36) |
358 (43) |
365 (50) |
371 (56) |
377 (62) |
383 (68) |
389 (74) |