104ed7/3
Jump to navigation
Jump to search
Prime factorization
23 × 13
Step size
14.1045¢
Octave
85\104ed7/3 (1198.88¢)
(semiconvergent)
Twelfth
135\104ed7/3 (1904.11¢)
Consistency limit
4
Distinct consistency limit
4
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 103ed7/3 | 104ed7/3 | 105ed7/3 → |
(semiconvergent)
104 equal divisions of 7/3 (abbreviated 104ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 104 equal parts of about 14.1 ¢ each. Each step represents a frequency ratio of (7/3)1/104, or the 104th root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 14.1 | |
2 | 28.2 | |
3 | 42.3 | 40/39, 41/40, 42/41, 43/42 |
4 | 56.4 | 32/31 |
5 | 70.5 | |
6 | 84.6 | 21/20, 41/39, 43/41 |
7 | 98.7 | 18/17 |
8 | 112.8 | |
9 | 126.9 | 14/13, 43/40 |
10 | 141 | |
11 | 155.1 | 23/21 |
12 | 169.3 | 32/29, 43/39 |
13 | 183.4 | 10/9 |
14 | 197.5 | 37/33, 46/41 |
15 | 211.6 | 26/23 |
16 | 225.7 | 33/29, 41/36 |
17 | 239.8 | 23/20, 39/34 |
18 | 253.9 | 22/19 |
19 | 268 | 7/6 |
20 | 282.1 | 20/17, 33/28 |
21 | 296.2 | 19/16 |
22 | 310.3 | |
23 | 324.4 | 41/34 |
24 | 338.5 | 28/23 |
25 | 352.6 | 38/31 |
26 | 366.7 | 21/17 |
27 | 380.8 | |
28 | 394.9 | |
29 | 409 | |
30 | 423.1 | 23/18, 37/29 |
31 | 437.2 | 9/7 |
32 | 451.3 | 35/27 |
33 | 465.4 | 17/13 |
34 | 479.6 | 29/22 |
35 | 493.7 | |
36 | 507.8 | |
37 | 521.9 | 23/17, 27/20 |
38 | 536 | |
39 | 550.1 | 11/8 |
40 | 564.2 | 18/13 |
41 | 578.3 | |
42 | 592.4 | 31/22 |
43 | 606.5 | 44/31 |
44 | 620.6 | |
45 | 634.7 | 13/9 |
46 | 648.8 | 16/11 |
47 | 662.9 | |
48 | 677 | 34/23 |
49 | 691.1 | |
50 | 705.2 | |
51 | 719.3 | |
52 | 733.4 | 26/17, 29/19 |
53 | 747.5 | 20/13, 37/24 |
54 | 761.6 | |
55 | 775.7 | 36/23 |
56 | 789.9 | 41/26 |
57 | 804 | 43/27 |
58 | 818.1 | |
59 | 832.2 | 21/13, 34/21 |
60 | 846.3 | 31/19 |
61 | 860.4 | 23/14 |
62 | 874.5 | |
63 | 888.6 | |
64 | 902.7 | 32/19 |
65 | 916.8 | 17/10 |
66 | 930.9 | 12/7 |
67 | 945 | 19/11 |
68 | 959.1 | 40/23 |
69 | 973.2 | |
70 | 987.3 | 23/13 |
71 | 1001.4 | 41/23 |
72 | 1015.5 | 9/5 |
73 | 1029.6 | 29/16 |
74 | 1043.7 | 42/23 |
75 | 1057.8 | |
76 | 1071.9 | 13/7 |
77 | 1086 | |
78 | 1100.2 | 17/9 |
79 | 1114.3 | 40/21 |
80 | 1128.4 | 23/12 |
81 | 1142.5 | |
82 | 1156.6 | 39/20, 41/21 |
83 | 1170.7 | |
84 | 1184.8 | |
85 | 1198.9 | 2/1 |
86 | 1213 | |
87 | 1227.1 | |
88 | 1241.2 | 41/20, 43/21 |
89 | 1255.3 | 33/16 |
90 | 1269.4 | |
91 | 1283.5 | 21/10 |
92 | 1297.6 | 36/17 |
93 | 1311.7 | |
94 | 1325.8 | 43/20 |
95 | 1339.9 | 13/6 |
96 | 1354 | |
97 | 1368.1 | |
98 | 1382.2 | 20/9 |
99 | 1396.3 | |
100 | 1410.5 | |
101 | 1424.6 | 41/18 |
102 | 1438.7 | 39/17 |
103 | 1452.8 | 37/16, 44/19 |
104 | 1466.9 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.12 | +2.16 | -2.23 | +6.38 | +1.04 | +2.16 | -3.35 | +4.31 | +5.27 | -4.59 | -0.07 |
Relative (%) | -7.9 | +15.3 | -15.8 | +45.3 | +7.4 | +15.3 | -23.7 | +30.6 | +37.3 | -32.5 | -0.5 | |
Steps (reduced) |
85 (85) |
135 (31) |
170 (66) |
198 (94) |
220 (12) |
239 (31) |
255 (47) |
270 (62) |
283 (75) |
294 (86) |
305 (97) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.40 | +1.04 | -5.57 | -4.46 | +3.42 | +3.20 | -5.78 | +4.15 | +4.31 | -5.70 | +1.97 |
Relative (%) | +17.0 | +7.4 | -39.5 | -31.6 | +24.2 | +22.7 | -41.0 | +29.4 | +30.6 | -40.4 | +14.0 | |
Steps (reduced) |
315 (3) |
324 (12) |
332 (20) |
340 (28) |
348 (36) |
355 (43) |
361 (49) |
368 (56) |
374 (62) |
379 (67) |
385 (73) |