106ed7/3
Jump to navigation
Jump to search
Prime factorization
2 × 53
Step size
13.8384¢
Octave
87\106ed7/3 (1203.94¢)
Twelfth
137\106ed7/3 (1895.86¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 105ed7/3 | 106ed7/3 | 107ed7/3 → |
106 equal divisions of 7/3 (abbreviated 106ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 106 equal parts of about 13.8 ¢ each. Each step represents a frequency ratio of (7/3)1/106, or the 106th root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 13.838 | |
2 | 27.677 | |
3 | 41.515 | 41/40, 44/43 |
4 | 55.354 | |
5 | 69.192 | |
6 | 83.03 | 43/41 |
7 | 96.869 | 18/17 |
8 | 110.707 | |
9 | 124.546 | 43/40, 44/41 |
10 | 138.384 | 13/12 |
11 | 152.222 | 12/11 |
12 | 166.061 | 11/10 |
13 | 179.899 | 41/37 |
14 | 193.738 | 19/17 |
15 | 207.576 | |
16 | 221.414 | 33/29 |
17 | 235.253 | 39/34 |
18 | 249.091 | |
19 | 262.93 | |
20 | 276.768 | 34/29 |
21 | 290.607 | 13/11 |
22 | 304.445 | 31/26, 37/31 |
23 | 318.283 | |
24 | 332.122 | 23/19 |
25 | 345.96 | |
26 | 359.799 | |
27 | 373.637 | 36/29 |
28 | 387.475 | |
29 | 401.314 | 29/23 |
30 | 415.152 | |
31 | 428.991 | |
32 | 442.829 | 31/24, 40/31 |
33 | 456.667 | |
34 | 470.506 | |
35 | 484.344 | 37/28, 41/31 |
36 | 498.183 | |
37 | 512.021 | 39/29 |
38 | 525.859 | |
39 | 539.698 | |
40 | 553.536 | |
41 | 567.375 | 25/18, 43/31 |
42 | 581.213 | 7/5 |
43 | 595.051 | 31/22 |
44 | 608.89 | 37/26 |
45 | 622.728 | 33/23 |
46 | 636.567 | |
47 | 650.405 | |
48 | 664.243 | |
49 | 678.082 | 34/23 |
50 | 691.92 | |
51 | 705.759 | |
52 | 719.597 | |
53 | 733.435 | 29/19 |
54 | 747.274 | 20/13, 37/24 |
55 | 761.112 | |
56 | 774.951 | 36/23 |
57 | 788.789 | 30/19, 41/26 |
58 | 802.627 | |
59 | 816.466 | |
60 | 830.304 | |
61 | 844.143 | |
62 | 857.981 | 23/14 |
63 | 871.82 | 43/26 |
64 | 885.658 | 5/3 |
65 | 899.496 | 37/22, 42/25 |
66 | 913.335 | 39/23 |
67 | 927.173 | 41/24 |
68 | 941.012 | |
69 | 954.85 | 33/19 |
70 | 968.688 | |
71 | 982.527 | 30/17 |
72 | 996.365 | |
73 | 1010.204 | 43/24 |
74 | 1024.042 | |
75 | 1037.88 | |
76 | 1051.719 | |
77 | 1065.557 | 37/20 |
78 | 1079.396 | 41/22 |
79 | 1093.234 | |
80 | 1107.072 | 36/19 |
81 | 1120.911 | |
82 | 1134.749 | |
83 | 1148.588 | 33/17 |
84 | 1162.426 | 43/22 |
85 | 1176.264 | |
86 | 1190.103 | |
87 | 1203.941 | |
88 | 1217.78 | |
89 | 1231.618 | |
90 | 1245.456 | 39/19 |
91 | 1259.295 | 29/14 |
92 | 1273.133 | |
93 | 1286.972 | |
94 | 1300.81 | 36/17 |
95 | 1314.648 | |
96 | 1328.487 | 28/13 |
97 | 1342.325 | |
98 | 1356.164 | |
99 | 1370.002 | |
100 | 1383.84 | |
101 | 1397.679 | |
102 | 1411.517 | |
103 | 1425.356 | |
104 | 1439.194 | 39/17 |
105 | 1453.033 | |
106 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.94 | -6.09 | -5.96 | -4.79 | -2.15 | -6.09 | -2.01 | +1.65 | -0.85 | +0.20 | +1.79 |
Relative (%) | +28.5 | -44.0 | -43.0 | -34.6 | -15.6 | -44.0 | -14.6 | +11.9 | -6.2 | +1.5 | +12.9 | |
Steps (reduced) |
87 (87) |
137 (31) |
173 (67) |
201 (95) |
224 (12) |
243 (31) |
260 (48) |
275 (63) |
288 (76) |
300 (88) |
311 (99) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.60 | -2.15 | +2.95 | +1.93 | -6.16 | +5.59 | -4.98 | +3.09 | +1.65 | +4.14 | -3.62 |
Relative (%) | +11.6 | -15.6 | +21.3 | +13.9 | -44.5 | +40.4 | -36.0 | +22.3 | +11.9 | +30.0 | -26.2 | |
Steps (reduced) |
321 (3) |
330 (12) |
339 (21) |
347 (29) |
354 (36) |
362 (44) |
368 (50) |
375 (57) |
381 (63) |
387 (69) |
392 (74) |