22L 1s
← 21L 1s | 22L 1s | 23L 1s → |
↙ 21L 2s | ↓ 22L 2s | 23L 2s ↘ |
┌╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥┬┐ │║║║║║║║║║║║║║║║║║║║║║║││ │││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLLLLLLLLLLLLLLLLLLLLL
22L 1s is the scale that is most commonly produced by stacking the interval of 33/32. If it had a name, it would most probably be quartismoid, since its harmonic entropy minimum corresponds to tempering out the quartisma - five 33/32s being equated with 7/6.
Relation to equal divisions
From 1\22 to 4\91, 13 steps amount to a diatonic fifth. Between 4\91 and 1\23, 13 steps amount to a pelog / mavila fifth.
Further breaking down the categories, when the step ratio is greater than 4.472, then 13 generators amount to a superpyth fifth and the tuning approaches 22edo.
6 steps act as a pseudo-6/5, and when they actually act as 6/5 along with 5 steps being equal to 7/6, 385/384 is tempered out. If one were to instead tune in favour of 6/5 instead of 7/6, the resulting hardness would be aroun 1.233.
Scale tree
Generator | L | s | L/s | Comments | |||||
---|---|---|---|---|---|---|---|---|---|
1\23 | 1 | 1 | 1.000 | ||||||
6\137 | 6 | 5 | 1.200 | ||||||
5\114 | 5 | 4 | 1.250 | ||||||
9\205 | 9 | 7 | 1.286 | ||||||
4\91 | 4 | 3 | 1.333 | 13 steps adding to lower bound of diatonic fifths (684.17c) is here | |||||
11\250 | 11 | 8 | 1.375 | ||||||
7\159 | 7 | 5 | 1.400 | ||||||
10\227 | 10 | 7 | 1.428 | ||||||
3\68 | 3 | 2 | 1.500 | Stretched 23edo is in this range | |||||
11\249 | 11 | 7 | 1.571 | ||||||
8\181 | 8 | 5 | 1.600 | ||||||
13\294 | 13 | 8 | 1.625 | ||||||
5\113 | 5 | 3 | 1.667 | ||||||
12\271 | 12 | 7 | 1.714 | ||||||
7\158 | 7 | 4 | 1.750 | ||||||
9\203 | 9 | 5 | 1.800 | ||||||
2\45 | 2 | 1 | 2.000 | Basic quartismoid | |||||
9\202 | 9 | 4 | 2.250 | ||||||
7\157 | 7 | 3 | 2.333 | ||||||
12\269 | 12 | 5 | 2.400 | ||||||
5\112 | 5 | 2 | 2.500 | 13 steps adding to 1/4 comma meantone fifth
is around here | |||||
13\291 | 13 | 5 | 2.600 | ||||||
8\179 | 8 | 3 | 2.667 | ||||||
11\246 | 11 | 4 | 2.750 | ||||||
3\67 | 3 | 1 | 3.000 | ||||||
10\223 | 10 | 3 | 3.333 | ||||||
7\156 | 7 | 2 | 3.500 | ||||||
11\245 | 11 | 3 | 3.667 | ||||||
4\89 | 4 | 1 | 4.000 | ||||||
9\200 | 9 | 2 | 4.500 | 13 steps adding to 3/2 perfect fifth is around here | |||||
5\111 | 5 | 1 | 5.000 | ||||||
6\133 | 6 | 1 | 6.000 | ||||||
1\22 | 1 | 0 | → inf |