User:VectorGraphics/Diatonic major third

Diatonic major third
MOS 5L 2s
Other names Major 2-diastep
Generator span +4 generators
Tuning range 343c - 480c
Basic tuning 400c
Chromatically adjacent interval Diatonic minor third
Adjacent tunings Minor 2-pelstep, Minor 4-oneirostep
Parent interval Diminished 2-pentstep
Daughter intervals M-chromatic minor 4-step, P-chromatic major 4-step

In the diatonic scale, the major third is the major variant of the 2-diastep, or third. It is generated by stacking 4 diatonic perfect fifths and octave-reducing. It can be stacked with a diatonic minor third to form a perfect fifth, and as such is often involved in chord structures in diatonic harmony.

Name

In TAMNAMS, this interval is called the major 2-diastep. However, because the diatonic scale is the standard scale of Western theory, it is more commonly called a major third, such as in standard Western notation, chain-of-fifths notation and quasi-diatonic MOS notation.

Tunings

Being an abstract MOS degree, and not a specific interval, the diatonic major third doesn't have a fixed tuning, but instead has a range of ways it can be tuned, based on the tuning of the generator used in making the scale.

The tuning range of the diatonic major third ranges from 342.8 cents to 480 cents. Sharp of this, it becomes a minor 4-oneirostep, and flat of this, it becomes a minor 2-pelstep.

The diatonic major third is itself a type of diminished 2-pentstep, and contains the categories of m-chromatic minor 4-step and p-chromatic major 4-step, corresponding to the flat-of-basic and sharp-of-basic tunings of the major third respectively.

Tunings of the major 2-diastep
Tuning Step ratio Edo Cents
Equalized 1:1 7 343c
Supersoft 4:3 26 369c
Soft 3:2 19 379c
Semisoft 5:3 31 387c
Basic 2:1 12 400c
Semihard 5:2 29 414c
Hard 3:1 17 424c
Superhard 4:1 22 436c
Collapsed 1:0 5 480c

In regular temperaments

If the diatonic perfect fifth is treated as 3/2, approximating various intervals with the diatonic major third leads to the following temperaments:

Just interval Cents Temperament Tempered comma Generator (eigenmonzo tuning)
27/22 355c Io 33/32 Perfect 4-diastep ≈ 689c
16/13 359c Superflat 1053/1024 Perfect 4-diastep ≈ 690c
21/17 366c Temperament of 459/448 459/448 Perfect 4-diastep ≈ 692c
5/4 386c Meantone 81/80 Perfect 4-diastep ≈ 697c
81/64 408c Pythagorean 1/1 Perfect 4-diastep ≈ 702c
14/11 418c Parapyth/Pentacircle 896/891 Perfect 4-diastep ≈ 705c
9/7 435c Archy/Superpyth 64/63 Perfect 4-diastep ≈ 709c
13/10 454c Oceanfront/Temperament of 416/405 416/405 Perfect 4-diastep ≈ 714c