8L 2s
↖ 7L 1s | ↑ 8L 1s | 9L 1s ↗ |
← 7L 2s | 8L 2s | 9L 2s → |
↙ 7L 3s | ↓ 8L 3s | 9L 3s ↘ |
┌╥╥╥╥┬╥╥╥╥┬┐ │║║║║│║║║║││ ││││││││││││ └┴┴┴┴┴┴┴┴┴┴┘
Scale structure
sLLLLsLLLL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
8L 2s, named taric in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 8 large steps and 2 small steps, with a period of 4 large steps and 1 small step that repeats every 600.0 ¢, or twice every octave. Generators that produce this scale range from 120 ¢ to 150 ¢, or from 450 ¢ to 480 ¢. Scales of the true MOS form, where every period is the same, are proper because there is only one small step per period.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-tarastep | Perfect 0-tarastep | P0tas | 0 | 0.0 ¢ |
1-tarastep | Diminished 1-tarastep | d1tas | s | 0.0 ¢ to 120.0 ¢ |
Perfect 1-tarastep | P1tas | L | 120.0 ¢ to 150.0 ¢ | |
2-tarastep | Minor 2-tarastep | m2tas | L + s | 150.0 ¢ to 240.0 ¢ |
Major 2-tarastep | M2tas | 2L | 240.0 ¢ to 300.0 ¢ | |
3-tarastep | Minor 3-tarastep | m3tas | 2L + s | 300.0 ¢ to 360.0 ¢ |
Major 3-tarastep | M3tas | 3L | 360.0 ¢ to 450.0 ¢ | |
4-tarastep | Perfect 4-tarastep | P4tas | 3L + s | 450.0 ¢ to 480.0 ¢ |
Augmented 4-tarastep | A4tas | 4L | 480.0 ¢ to 600.0 ¢ | |
5-tarastep | Perfect 5-tarastep | P5tas | 4L + s | 600.0 ¢ |
6-tarastep | Diminished 6-tarastep | d6tas | 4L + 2s | 600.0 ¢ to 720.0 ¢ |
Perfect 6-tarastep | P6tas | 5L + s | 720.0 ¢ to 750.0 ¢ | |
7-tarastep | Minor 7-tarastep | m7tas | 5L + 2s | 750.0 ¢ to 840.0 ¢ |
Major 7-tarastep | M7tas | 6L + s | 840.0 ¢ to 900.0 ¢ | |
8-tarastep | Minor 8-tarastep | m8tas | 6L + 2s | 900.0 ¢ to 960.0 ¢ |
Major 8-tarastep | M8tas | 7L + s | 960.0 ¢ to 1050.0 ¢ | |
9-tarastep | Perfect 9-tarastep | P9tas | 7L + 2s | 1050.0 ¢ to 1080.0 ¢ |
Augmented 9-tarastep | A9tas | 8L + s | 1080.0 ¢ to 1200.0 ¢ | |
10-tarastep | Perfect 10-tarastep | P10tas | 8L + 2s | 1200.0 ¢ |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (taradegree) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
8|0(2) | 1 | LLLLsLLLLs | Perf. | Perf. | Maj. | Maj. | Aug. | Perf. | Perf. | Maj. | Maj. | Aug. | Perf. |
6|2(2) | 2 | LLLsLLLLsL | Perf. | Perf. | Maj. | Maj. | Perf. | Perf. | Perf. | Maj. | Maj. | Perf. | Perf. |
4|4(2) | 3 | LLsLLLLsLL | Perf. | Perf. | Maj. | Min. | Perf. | Perf. | Perf. | Maj. | Min. | Perf. | Perf. |
2|6(2) | 4 | LsLLLLsLLL | Perf. | Perf. | Min. | Min. | Perf. | Perf. | Perf. | Min. | Min. | Perf. | Perf. |
0|8(2) | 5 | sLLLLsLLLL | Perf. | Dim. | Min. | Min. | Perf. | Perf. | Dim. | Min. | Min. | Perf. | Perf. |
Scale tree
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |