Prime factorization
|
2 × 3
|
Step size
|
116.993 ¢
|
Octave
|
10\6edf (1169.93 ¢) (→ 5\3edf)
|
Twelfth
|
16\6edf (1871.88 ¢) (→ 8\3edf)
|
Consistency limit
|
3
|
Distinct consistency limit
|
3
|
Special properties
|
|
6EDF is the equal division of the just perfect fifth into six parts of 116.9925 cents each, corresponding to 10.2571 edo. It is related to the miracle temperament, which tempers out 225/224 and 1029/1024 in the 7-limit.
Intervals
degrees
|
cents ~ cents octave-reduced
|
approximate ratios
|
Neptunian notation
|
0
|
0 (perfect unison, 1:1)
|
1/1
|
C
|
1
|
117
|
16/15, 15/14
|
C#
|
2
|
234
|
8/7
|
Db
|
3
|
351
|
11/9, 27/22
|
D
|
4
|
468
|
21/16
|
E
|
5
|
585
|
7/5, 45/32
|
F
|
6
|
702 (just perfect fifth, 3:2)
|
3/2
|
C
|
7
|
819
|
8/5, 21/13
|
C#
|
8
|
936
|
12/7, 55/32
|
Db
|
9
|
1053
|
11/6
|
D
|
10
|
1170
|
49/25, 160/81, 2/1
|
E
|
11
|
1287 ~ 87
|
|
F
|
12
|
1404 ~ 204 (just major whole tone/ninth, 9:4)
|
|
C
|
13
|
1521 ~ 321
|
|
C#
|
14
|
1638 ~ 438
|
|
Db
|
15
|
1755 ~ 555
|
|
D
|
16
|
1872 ~ 672
|
|
E
|
17
|
1988 ~ 788
|
|
F
|
18
|
2106 ~ 906 (Pythagorean major sixth, 27:8)
|
|
C
|
19
|
2223 ~ 1023
|
|
C#
|
20
|
2340 ~ 1140
|
|
Db
|
21
|
2457 ~ 57
|
|
D
|
22
|
2574 ~ 174
|
|
E
|
23
|
2691 ~ 291
|
|
F
|
24
|
2808 ~ 408 (Pythagorean major third, 81:16)
|
|
C
|
Compositions