8L 2s

From Xenharmonic Wiki
Jump to navigation Jump to search
↖ 7L 1s ↑ 8L 1s 9L 1s ↗
← 7L 2s 8L 2s 9L 2s →
↙ 7L 3s ↓ 8L 3s 9L 3s ↘
┌╥╥╥╥┬╥╥╥╥┬┐
│║║║║│║║║║││
││││││││││││
└┴┴┴┴┴┴┴┴┴┴┘
Scale structure
Step pattern LLLLsLLLLs
sLLLLsLLLL
Equave 2/1 (1200.0 ¢)
Period 1\2 (600.0 ¢)
Generator size
Bright 1\10 to 1\8 (120.0 ¢ to 150.0 ¢)
Dark 3\8 to 4\10 (450.0 ¢ to 480.0 ¢)
TAMNAMS information
Name taric
Prefix tara-
Abbrev. ta
Related MOS scales
Parent 2L 6s
Sister 2L 8s
Daughters 10L 8s, 8L 10s
Neutralized 6L 4s
2-Flought 18L 2s, 8L 12s
Equal tunings
Equalized (L:s = 1:1) 1\10 (120.0 ¢)
Supersoft (L:s = 4:3) 4\38 (126.3 ¢)
Soft (L:s = 3:2) 3\28 (128.6 ¢)
Semisoft (L:s = 5:3) 5\46 (130.4 ¢)
Basic (L:s = 2:1) 2\18 (133.3 ¢)
Semihard (L:s = 5:2) 5\44 (136.4 ¢)
Hard (L:s = 3:1) 3\26 (138.5 ¢)
Superhard (L:s = 4:1) 4\34 (141.2 ¢)
Collapsed (L:s = 1:0) 1\8 (150.0 ¢)

8L 2s, named taric in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 8 large steps and 2 small steps, with a period of 4 large steps and 1 small step that repeats every 600.0 ¢, or twice every octave. Generators that produce this scale range from 120 ¢ to 150 ¢, or from 450 ¢ to 480 ¢. Scales of the true MOS form, where every period is the same, are proper because there is only one small step per period. This MOS is always proper because there is one small step per period.

Modes

  • 8|0(2) LLLLsLLLLs
  • 6|2(2) LLLsLLLLsL
  • 4|4(2) LLsLLLLsLL
  • 2|6(2) LsLLLLsLLL
  • 0|8(2) sLLLLsLLLL

Scale tree

Generator ranges:

  • Chroma-positive generator: 120 cents (1\10) to 150 cents (1\8)
  • Chroma-negative generator: 450 cents (3\8) to 480 cents (4\10)
Generator Cents L s L/s Comments
1\10 120.000 1 1 1.000
6\58 124.138 6 5 1.200 Quadrasruta (sagugu&bizozogu)
5\48 125.000 5 4 1.250
9\86 125.581 9 7 1.286
4\38 126.316 4 3 1.333
11\104 126.923 11 8 1.375
7\66 127.273 7 5 1.400
10\94 127.660 10 7 1.429
3\28 128.571 3 2 1.500
11\102 129.412 11 7 1.571
8\74 129.730 8 5 1.600
13\120 130.000 13 8 1.625 Golden taric (129.9254¢)
5\46 130.435 5 3 1.667
12\110 130.909 12 7 1.714
7\64 131.250 7 4 1.750
9\82 131.707 9 5 1.800
2\18 133.333 2 1 2.000 Basic taric
Octokaidecal is around here
9\80 135.000 9 4 2.250
7\62 135.484 7 3 2.333
12\106 135.849 12 5 2.400
5\44 136.364 5 2 2.500
13\114 136.842 13 5 2.600 Unnamed golden tuning (136.9248¢)
8\70 137.143 8 3 2.667
11\96 137.500 11 4 2.750
3\26 138.462 3 1 3.000
10\86 139.535 10 3 3.333
7\60 140.000 7 2 3.500 Fifives/Crepuscular
11\94 140.426 11 3 3.667
4\34 141.176 4 1 4.000
9\76 142.105 9 2 4.500
5\42 142.857 5 1 5.000
6\50 144.000 6 1 6.000 Bisemidim
1\8 150.000 1 0 → inf