71edo
← 70edo | 71edo | 72edo → |
The 71 equal temperament or 71-EDO divides the octave into 71 equal parts of 16.901 cents each.
71edo is the 20th prime EDO.
Theory
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.90 | +2.42 | -5.45 | -1.09 | +6.43 | +4.54 | -6.58 | -3.55 | +6.71 | +2.46 | -2.92 |
Relative (%) | +46.8 | +14.3 | -32.2 | -6.5 | +38.0 | +26.9 | -38.9 | -21.0 | +39.7 | +14.5 | -17.3 | |
Steps (reduced) |
113 (42) |
165 (23) |
199 (57) |
225 (12) |
246 (33) |
263 (50) |
277 (64) |
290 (6) |
302 (18) |
312 (28) |
321 (37) |
It tempers out 20480/19683 and 393216/390625 in the 5-limit, 875/864, 4000/3969 and 1029/1024 in the 7-limit, 245/242 and 100/99 in the 11-limit, and 91/90 in the 13-limit. In the 13-limit it supplies the optimal patent val for the 29&71 and 34&37 temperaments.
Intervals
# | Cents | Diatonic interval category |
---|---|---|
0 | 0.0 | perfect unison |
1 | 17.1 | superunison |
2 | 34.3 | superunison |
3 | 51.4 | subminor second |
4 | 68.6 | subminor second |
5 | 85.7 | minor second |
6 | 102.9 | minor second |
7 | 120.0 | supraminor second |
8 | 137.1 | supraminor second |
9 | 154.3 | neutral second |
10 | 171.4 | submajor second |
11 | 188.6 | major second |
12 | 205.7 | major second |
13 | 222.9 | supermajor second |
14 | 240.0 | ultramajor second |
15 | 257.1 | ultramajor second |
16 | 274.3 | subminor third |
17 | 291.4 | minor third |
18 | 308.6 | minor third |
19 | 325.7 | supraminor third |
20 | 342.9 | neutral third |
21 | 360.0 | submajor third |
22 | 377.1 | submajor third |
23 | 394.3 | major third |
24 | 411.4 | major third |
25 | 428.6 | supermajor third |
26 | 445.7 | ultramajor third |
27 | 462.9 | subfourth |
28 | 480.0 | perfect fourth |
29 | 497.1 | perfect fourth |
30 | 514.3 | perfect fourth |
31 | 531.4 | superfourth |
32 | 548.6 | superfourth |
33 | 565.7 | low tritone |
34 | 582.9 | low tritone |
35 | 600.0 | high tritone |
36 | 617.1 | high tritone |
37 | 634.3 | high tritone |
38 | 651.4 | subfifth |
39 | 668.6 | subfifth |
40 | 685.7 | perfect fifth |
41 | 702.9 | perfect fifth |
42 | 720.0 | superfifth |
43 | 737.1 | superfifth |
44 | 754.3 | ultrafifth |
45 | 771.4 | subminor sixth |
46 | 788.6 | minor sixth |
47 | 805.7 | minor sixth |
48 | 822.9 | supraminor sixth |
49 | 840.0 | neutral sixth |
50 | 857.1 | neutral sixth |
51 | 874.3 | submajor sixth |
52 | 891.4 | major sixth |
53 | 908.6 | major sixth |
54 | 925.7 | supermajor sixth |
55 | 942.9 | ultramajor sixth |
56 | 960.0 | subminor seventh |
57 | 977.1 | subminor seventh |
58 | 994.3 | minor seventh |
59 | 1011.4 | minor seventh |
60 | 1028.6 | supraminor seventh |
61 | 1045.7 | neutral seventh |
62 | 1062.9 | submajor seventh |
63 | 1080.0 | major seventh |
64 | 1097.1 | major seventh |
65 | 1114.3 | major seventh |
66 | 1131.4 | supermajor seventh |
67 | 1148.6 | ultramajor seventh |
68 | 1165.7 | suboctave |
69 | 1182.9 | suboctave |
70 | 1200.0 | perfect octave |