1600edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 1599edo 1600edo 1601edo →
Prime factorization 26 × 52
Step size 0.75 ¢ 
Fifth 936\1600 (702 ¢) (→ 117\200)
Semitones (A1:m2) 152:120 (114 ¢ : 90 ¢)
Consistency limit 37
Distinct consistency limit 37

The 1600 equal divisions of the octave (1600edo), or the 1600-tone equal temperament (1600tet), 1600 equal temperament (1600et) when viewed from a regular temperament perspective, divides the octave into 1600 equal parts of exactly 750 millicents each.

Theory

Approximation of prime harmonics in 1600edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 +0.045 -0.064 +0.174 -0.068 +0.222 +0.045 +0.237 +0.226 +0.173 +0.214
Relative (%) +0.0 +6.0 -8.5 +23.2 -9.1 +29.6 +5.9 +31.6 +30.1 +23.0 +28.6
Steps
(reduced)
1600
(0)
2536
(936)
3715
(515)
4492
(1292)
5535
(735)
5921
(1121)
6540
(140)
6797
(397)
7238
(838)
7773
(1373)
7927
(1527)

1600edo is a very strong 37-limit system, being distinctly consistent in the 37-limit with a smaller relative error than anything else with this property until 4501. It is also the first division past 311 with a lower 43-limit relative error. One step of it is the relative cent for 16. It's high divisibility, high consistency limit, and compatibility with the decimal system make it a candidate for interval size measure.

1600's divisors are 1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 160, 200, 320, 400, 800.

In the 5-limit, it supports kwazy.

In the 7-limit, it tempers out the ragisma, 4375/4374.

In the 11-limit, it supports the rank-3 temperament thor.

Regular temperament properties

Subgroup Comma list Mapping Optimal

8ve stretch (¢)

Tuning error
Absolute (¢) Relative (%)
2.3.5 [-53, 10, 16, [26, -75, 40 [1600 2536 3715]] -0.000318 0.022794
2.3.5.7 4375/4374, [36, -5, 0, -10, [-17, 5, 16, -10 [1600 2536 3715 4492]] -0.015742 0.033217
2.3.5.7.11 3025/3024, 4375/4374, 184549376/184528125, 7680000000/7672950131 [1600 2536 3715 4492 5535]] ? ?
2.3.5.7.11.13 3025/3024, 4096/4095, 4375/4374, 91125/91091, 14236560/14235529 [1600 2536 3715 4492 5535 5921]] ? ?
2.3.5.7.11.13.17 2500/2499, 3025/3024, 4375/4374, 14875/14872, 154880/154791, 1724800/1724463 [1600 2536 3715 4492 5535 5921 6540]] -0.016332

Rank-2 temperaments

Periods
per 8ve
Generator Cents Associated
ratio
Temperaments
2 217\1600 162.75 1125/1024 Kwazy
32 121\1600
(21/1600)
90.75
(15.75)
48828125/46294416
(?)
Windrose
32 357\1600
(7\1600)
267.75
(5.25)
245/143
(?)
Germanium
32 23\1600 17.25 ? Dike
80 629\1600
(9\1600)
471.75
(6.75)
130/99
(?)
Tetraicosic